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Abstract: In this survey note we discuss about non absolute integrable functions and we put our view about the question: Why we 

need Non absolute integral in place of Lebesgue integral? Various areas are discussed, where we can find Henstock-Kurzweil integral 

in place of Lebesgue integral. 
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Survey 

At the end of the seventeenth century Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716) 

independently discovered differential and integral calculus. Differential calculus was used to define the slope of 

a curve at a particular point and integral calculus was used to compute the area under a curve. As it turns out, 

for a large class of functions there was an inverse relationship between differential and integral calculus in the 

sense that a differentiable function could be obtained up to a constant by integrating its derivative.  In fact, a 

function 𝐹: [𝑎, 𝑏] →  ℝ  which is differentiable everywhere on [𝑎, 𝑏] except on a loosely stated small set 𝑆 ⊆
 [𝑎, 𝑏], could in certain cases be recovered by integrating a function 𝑓: [𝑎, 𝑏] → ℝ which satisfies 𝐹′ = 𝑓 on 
[𝑎, 𝑏] ∖ 𝑆. Exactly how small 𝑆 had to be and how well-behaved 𝐹 had to be on 𝑆 was not known at the time. 

The mathematics of that time simply did not allow mathematicians to conduct research into descriptive 

characterizations of integrable functions and consequently many aspects of integration theory remained 

shrouded in mystery. During the eighteenth century mathematicians began to realize that the very foundation of 

mathematical analysis was highly unstable and loosely defined. When geometric intuition no longer was 

sufficient, this served as a massive obstacle in research. Consequently, in the nineteenth century mathematicians 

began developing a rigorous framework for mathematical analysis using various epsilon-delta type definitions 

and proofs. In particular, it was the formal approach to continuity which laid the groundwork for many 

significant breakthroughs in analysis. The modern treatment of continuity is typically attributed to Augustin-

Louis Cauchy (1789-1857), but there are many more mathematicians who made important contributions in this 

direction as well.  During this time integration theorists began to acquire tools which would allow them to 

rigorously define and study various integrals.  In 1854 Bernhard Riemann (1826-1866) introduced the Riemann 

integral which was one of the first formally defined integrals. In 1904 Henri Lebesgue (1875-1941) was able to 

show that a real-valued function defined on a compact interval is Riemann integrable if and only if it is bounded 

and discontinuous on a set of Lebesgue measure 0.  However, there are bounded derivatives which are 

discontinuous on a set of positive Lebesgue measure, and thus such derivatives are not Riemann integrable. An 

example of such a function was given by Vito Volterra (1860-1940) in 1881, which is constructed in (Lebesgue, 

1902, Example 1.4.1). Drawback was remedied by the Lebesgue integral which Lebesgue introduced in 
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(Lebesgue, 1902). As it turns out, the Lebesgue integral is a generalization of the Riemann integral and it is able 

to integrate all bounded derivatives restricted to compact intervals. Going back to our functions 𝐹 and 𝑓 where 

𝐹′ = 𝑓 on [𝑎, 𝑏] ∖  𝑆, if [𝑎, 𝑏] is compact then by Lebesgue’s fundamental theorem of calculus we have that 𝑓 is 

Lebesgue integrable on [𝑎, 𝑏] and 𝐹  can be re-constructed by the Lebesgue integral of 𝑓 if and only if 𝐹  is 

absolutely continuous and 𝑆 has Lebesgue measure 0.  Note that the absolute continuity of 𝐹 is a necessity here, 

thus it is easy to show that there are differentiable functions which cannot be recovered from their respective 

derivatives via the Lebesgue integral. If 𝐹 is not absolutely continuous and 𝑆 has Lebesgue measure 0, then in 

certain cases 𝑓 may still be Lebesgue integrable but 𝐹 can then not be recovered from the Lebesgue integral of 

𝑓. For example, if [𝑎, 𝑏]  =  [0,1], 𝐹 is the Cantor-Lebesgue function studied in (Lebesgue, 1904), and 𝑓 = 0 

every-where on [0,1],  then 𝐹′ = 𝑓  on [0,1] ∖  𝑆,  where 𝑆  has Lebesgue measure 0, yet 𝐹  cannot be 

reconstructed from 𝑓 via the Lebesgue integral. Unfortunately, the full power of the Lebesgue integral as it is 

known today was not understood by the mathematical community during this time and thus Lebesgue’s work 

did not garner the immediate attention one perhaps would expect. On asecond thought this is not too surprising, 

since measure theory was still a very new topic and functional analysis had not yet been developed to a point 

where these two areas of mathematics could be researched in unity to produce a more complete theory. Perhaps 

this is a partial explanation to why Lebesgue was not appointed as professor until 1919, as mentioned in 

(Gowers, 2008).  However, later on in the twentieth century mathematicians incrementally developed the 

necessary tools to study the Lebesgue integral more thoroughly and eventually the Lebesgue integral became 

the standard integral in advanced mathematical analysis. Despite the power of the Lebesgue integral, there were 

still finite and unbounded derivatives that could not be integrated.  In 1912, Arnaud Denjoy (1884-1974) 

presented a powerful integral which was able to integrate all finite derivatives and recover their primitive 

functions. As described in (Liu et al., 2018, Section 1.1), loosely stated, Denjoy constructed a transfinite 

sequence {(𝐼𝑘)}𝑘 ≤ Ω  of increasingly general integrals, where Ω  is the first uncountable ordinal, 𝐼0  is the 

Lebesgue integral and 𝐼Ω is the so called narrow Denjoy integral. Two years later in 1914 Oskar Perron (1880-

1975) introduced an integral, which after some modification in 1915 by Hans Bauer also able to integrate all 

finite derivatives and recover their primitive functions. It took quite some time, but by 1925 mathematicians had 

realized that the narrow Denjoy integral and the Perron integral are in fact equivalent, this is called the Hake-

Aleksandrov-Looman theorem. Consequently, the aforementioned integral of Denjoy and Perron is today called 

the Denjoy-Perron integral. Many years later in 1957, Jaroslav Kurzweil (born 1926) published a paper on 

differential equations in which he introduced a new integral.  Four years later in 1961, while unaware of the 

work of Kurzweil, Ralph Henstock (1923-2007) published a paper on integration theory in which he introduced 

an integral which is  primitive version of the integral of Jaroslav Kurzweil. Throughout a series of papers in the 

sixties, Henstock developed a substantial amount of properties of this integral. The definition of this integral as 

defined by Kurzweil in (Kurzweil, 1957) and Henstock in (Henstock, 1961) is quite elegant since it is highly 

reminiscent of the Riemann integral and since a substantial amount of its properties can be developed using 

Riemann sums and basic epsilon-delta proofs. Today the integral of Henstock and Kurzweil is called the 

Henstock-Kurzweil integral. As mathematicians later discovered, the Henstock-Kurzweil integral is in fact 

equivalent to the Denjoy-Perron integral.  By the late nineties, a lot of integration theorists had researched the 

Henstock-Kurzweil integral extensively and consequently, the theory of this integral had been highly refined.  

The Henstock–Kurzweil integral gives rise to a complete fundamental theorem of calculus in the sense that all 

finite derivatives can be integrated and their respective primitive functions can be re-constructed. This result is 

more general than the fundamental theorem of calculus for the Lebesgue integral which also requires the 

indefinite integral to be absolutely continuous. Henstock-Kurzweil integral gives rise to a monotone 

convergence theorem and a dominated convergence theorem, both of which are stronger than the corresponding 

theorems for the Lebesgue integral in the sense that weaker assumptions are imposed on the functional 

sequences in their respective suppositions. Improper Henstock-Kurzweil integral is contained in the Henstock-

Kurzweil integral. This is yet another property that the Lebesgue integral does not possess. Thus, the theoretical 

deficiencies of the Lebesgue integral are by and large remedied by the Henstock-Kurzweil integral. 
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How we replace Henstock-Kurzweil (HK) integral with Lebesgue measure? 

 There are two ways to define an integral. One can provide a descriptive definition or an operational (or 

constructive). A descriptive definition describes the integral in relationship to its derivative without proving any 

process for its construction. 

Definition 2.1 (Gill and Zachary, 2016): We define the weak variation 𝑉(𝐹, 𝐸), and the strong variation, 

𝑉∗ (𝐹, 𝐸), by: 

𝑉(𝐹𝐸) = sup {∑|𝐹(𝑏𝑖) − 𝐹(𝑎𝑖)|

𝑛

𝑖=1

} 

 and 

𝑉∗(𝐹, 𝐸) = sup {∑ 𝑤(𝐹, [𝑎𝑖, 𝑏𝑖])

𝑛

𝑖=1

} 

where the supremum is taken over all possible finite collections of non-overlapping intervals that have end 

points in 𝐸. 
1. We say that 𝐹 is of bounded variation on 𝐸, (𝐵𝑉), if 𝑉(𝐹, 𝐸) < ∞. 

2. We say that 𝐹 is of restricted bounded variation on 𝐸, (𝐵𝑉∗), if 𝑉∗(𝐹, 𝐸) < ∞. 

3. We say that 𝐹 is absolutely continuous on 𝐸, (𝐴𝐶), if for each 𝜖 > 0, there exists a 𝛿 > 0 such that, for 

every collection {[𝑎𝑖 , 𝑏𝑖], 1 ≤ 𝑖 ≤ 𝑛}, of nonoverlapping intervals with end points in 𝐸 and ∑ (𝑏𝑖 −𝑛
𝑖=1

𝑎𝑖) < 𝛿 , then ∑ |𝐹(𝑏𝑖) − 𝐹(𝑎𝑖)|𝑛
𝑖=1 < 𝜖. 

4. We say that 𝐹 is absolutely continuous on 𝐸 in the restricted sense, (𝐴𝐶)∗, if for each 𝜖 > 0, there 

exists a 𝛿 > 0  such that, for every collection {[𝑎𝑖, 𝑏𝑖], 1 ≤ 𝑖 ≤ 𝑛}, of nonoverlapping intervals with 

endpoints in 𝐸 and ∑ (𝑏𝑖 − 𝑎𝑖)
𝑛
𝑖=1 < 𝛿 , then ∑ 𝑤(𝐹, [𝑎𝑖 , 𝑏𝑖])𝑛

𝑖=1 < 𝜖. 

5. We say that 𝐹  is generalized absolutely continuous on 𝐸 , (𝐴𝐶𝐺),  if 𝐹|𝐸  is continuous and 𝐸  is a 

countable union of sets {𝐸𝑖} such that 𝐹 is (𝐴𝐶) on each 𝐸𝑖 . 

6. We say that 𝐹  is generalized absolutely continuous in the restricted sense in 𝐸, (𝐴𝐶𝐺)∗, if 𝐹|𝐸  is 

continuous and 𝐸 is a countable union of sets {𝐸𝑖} such that 𝐹 is (𝐴𝐶)∗ on each 𝐸𝑖 . 

The one thing that the Riemann approach in a first year analysis course cannot do is allow an immediate entry 

into measure theory in the subsequent course.  However, even here things are more interesting than this simple 

remark would suggest.  Due to an idea of Henstock, developed in particular by Thomson, (Thomson 1981), 

there are associated with each Riemann approach a series of natural metric measures that on analysis are found 

to contain the basic information about the primitives more precisely than the classical concepts of 𝐴𝐶𝐺∗ etc.  In 

particular the concept of variation allows yet another way of defining the various Riemann integrals.  These 

ideas are a little too refined for full mention here, but are part of the excellent re-working of trigonometric 

integrals by Thomson (Thomson 1981).   

 Definition 2.2 Descriptive Definitions: Let 𝐸  be a measurable subset of ℝ and 𝜇(𝐸)  denote the Lebesgue 

measure of 𝐸. Let 𝑐 ∈ ℝ. 
1. We say that 𝑐 is a point of density for 𝐸 if  

𝑑𝑐𝐸 =  lim
ℎ→ 0+

𝜇(𝐸 ∩ (𝑐 − ℎ, 𝑐 + ℎ))

2ℎ
= 1. 

2. We say that 𝑐 is a point of dispersion for 𝐸 if  

𝑑𝑐𝐸 =  lim
ℎ→ 0+

𝜇(𝐸 ∩ (𝑐 − ℎ, 𝑐 + ℎ))

2ℎ
= 0. 

3. We say that a function 𝐹: [𝑎, 𝑏] → ℝ is approximately continuous at 𝑐 ∈  𝐸 ⊂ [𝑎, 𝑏], if 𝑐 is a point of 

density for 𝐸 and 𝐹|𝐸 is differentiable at 𝑐. 
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 Theorem 2.3 (Gill and Zachary, 2016): Let 𝐹  be a function defined on [𝑎, 𝑏]  with 𝐹(𝑎) = 0,  then the 

following holds: 

1. If 𝐹  is (𝐴𝐶)  on [𝑎, 𝑏],  then 𝐹′  exists 𝑎. 𝑒. , and 𝐹′  is Lebesgue integrable , then 

∫ 𝐹′(𝑦)𝑑𝜇(𝑦)
𝑥

𝑎

= 𝐹(𝑥). 

2. If 𝐹  is (𝐴𝐶𝐺∗)  on [𝑎, 𝑏],  then 𝐹′  exists 𝑎. 𝑒.,  and 𝐹′  is Henstock-Kurzweil  integrable, then  

∫ 𝐹′(𝑦)𝑑𝜇(𝑦)
𝑥

𝑎

= 𝐹(𝑥). 

Example 2.4: If 𝐹  is any interval function and if 𝑉∗𝐹(𝐸) = inf
δ

sup
P

∑|𝐹(𝐽𝑖)| where 𝛿  is a gauge and 𝑃  is a 

partition in 𝐼 that is anchored in the set 𝐸,  then 𝑉∗ is a regular Borel measure. 

Example 2.5: If 𝑉∗ is 𝐴𝐶 then 𝐹 is the HK-integral of its derivative, that exists almost everywhere; further, if in 

addition 𝑉∗ is finite then 𝐹 is the Lebesgue integral of this derivative. 

 

Application of Henstock-Kurzweil integral and non absolute integrable function spaces 
The HK integral is one of the most powerful methods of integration currently being researched by the 

mathematicians. By using gauges, one can evaluate functions on more of a local level than one can with the 

traditional Riemann integral. This seemingly small change to the traditional definition of the Riemann integral 

has proven to have far reaching consequences. For example, the HK integral makes integration and 

differentiation truly inverse processes. The fact that the HK integral is a non-absolutely convergent integral 

makes it ideal for integrating functions which oscillate wildly, a feature not always available with the Lebesgue 

integral. 

This allows one to look at the integration process as a whole, rather than being forced to consider the negative 

and nonnegative cases separately as is often the case in Lebesgue integration theory. However, this advantage 

does have its drawbacks. To date no one has developed a suitable norm for the space 𝐻𝐾(𝐼).  
Despite the power of the Henstock-Kurzweil integral it is rarely used in under graduate or even postgraduate 

courses on mathematical analysis. There are several reasons for this. In elementary analysis courses students 

typically study the 

Darboux integral (and frequently take the Cauchy criterion for Darboux integrability as the definition of the 

integral). It is well-known that the Darboux integral is equivalent to the Riemann integral. First year students 

have a tendency of thinking in terms of formulas and graph representations of rather well-behaved functions and 

pay little to no attention to further details. Thus, a somewhat formal treatment of the Henstock-Kurzweil 

integral does certainly not belong in an analysis textbook aimed at first year students. In fact, Peng Yee Lee 

(born 1938) who was a student under Henstock between 1961 and 1965 mentioned in (Henstock, 1961) that 

Henstock once made an attempt to teach the Henstock-Kurzweil integral to first year students. Apparently, this 

was a disaster and he never tried it again. Since the Henstock-Kurzweil integral is in some sense a natural 

extension of the Riemann integral, one could argue that perhaps it should be introduced at a later stage. 

However, in postgraduate analysis courses (and perhaps in some cases in advanced undergraduate analysis 

courses) the integral of choice is for the most part the Lebesgue integral. While a substantial amount of the 

theory of the Lebesgue integral can be developed from the Henstock–Kurzweil integral, it is likely that the 

Henstock–Kurzweil integral has to contribute something highly practical which the Lebesgue integral does not, 

in order for it to have a chance of at least partially replacing the Lebesgue integral in advanced analysis courses. 

Some research involving the Henstock-Kurzweil integral, partial differential equations and integral 

transformations has been done, see for example (Mema, 2013; Mohanty and Talvila, 2003). Sometimes we are 

interested in solving problems with minimal smoothness assumptions and the solutions to such problems might 

involve bad functions that the theory of Lebesgue cannot deal with. Perhaps the Henstock-Kurzweil integral 
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could come into play here and remedy some of these problems. However, it will take more than three references 

to seemingly arbitrary papers in order for this to be the case. There needs to be a substantial amount of theory 

developed which is accessible to postgraduate students and which brings something new to the field of 

differential equations and integral transformations in order for the Henstock–Kurzweil integral to be seen more 

frequently in postgraduate courses. Whether or not this is possible is a question which is far beyond the scope of 

this thesis. Given what we have discovered in this thesis, even though a lot of results are quite interesting, it is 

difficult to argue that the Henstock–Kurzweil integral should be taught more in advanced analysis courses. 

In several physical phenomena, highly oscillating or singular functions appear (Hamed and Cummins, 1991; 

Condon et al. 2009; Hong and Xu, 2001). The Lebesgue integral is not enough for some highly oscillating 

functions leading to the possibility that the integral on the right side of the equality 2 (Becerra et al., 2020) does 

not exist for this type of functions and so the variational problem 2 (Becerra et al., 2020) would not be well 

defined. One way to solve this problem is to change the type of integral to be considered, in this work we will 

use the Henstock-Kurzweil integral. One way to solve this problem is to change the type of integral to be 

considered, in this work we will use the Henstock-Kurzweil integral. Different authors have studied differential 

equations involving Henstock-Kurzweil integrable functions. In (Len-Velasco et al., 2019) the authors use the 

Finite Element Method (FEM) for finding numerical solutions of elliptic problems with Henstock-Kurzweil 

integrable functions. They use open quadrature and Lobatto quadrature to approximate numerically the integrals 

that appear in the FEM. In (Liu et al., 2018) are given conditions to establish the existence of a solution to 

nonlinear second-order differential equations of type:  

−𝐷2𝑥 =  𝑓(𝑡, 𝑥)  +  𝑔(𝑡, 𝑥)𝐷𝑢  
subject to the boundary conditions 𝑥(0) = 𝛽 𝐷𝑥(0), 𝐷𝑥(1)  +  𝐷𝑥(𝜈) = 0,  where the derivatives are in the 

distributional sense, 𝑥, 𝑢 are regulated functions and 𝑔 is of bounded variation. In (Becerra et al., 2020), the 

Henstock-Kurzweil-Stieltjes integral is used to transform the distributional differential equation into an integral 

equation, then the Leray-Schauder nonlinear alternative theorem is applied for finding a solution.  

 

In (Sanchez-Perales and Mendoza-Torres, 2020) the existence and uniqueness of the Shrödinger equation, 

−𝑦′′ + 𝑞𝑦 = 𝑓 a.e. on [𝑎, 𝑏] subject to arbitrary boundary values, is guaranteed for functions 𝑓, 𝑞 Henstock-

Kurzweil integrable. Properties of the inverse of the Shrödinger operator are established, then the authors give 

conditions so that the solution of the differential equation can be expressed as a Fourier type series. 

Gill and Zachary (Gill and Zachary, 2016) discussed the space 𝐾𝑆𝑝(ℝ𝑛) called Kuelbs-Steadman space. In 

Feynman path integral: The properties of 𝕂𝕊𝑝[𝑹𝑛] derived earlier suggests that 𝕂𝕊2[𝑹𝑛]  may be a better 

Hilbert space than 𝑳[𝑹𝑛]  for the study of the path integral formulation of quantum theory developed by 

Feynman. Note that it is easy to prove that both the position and momentum operators have closed densely 

defined extensions to 𝕂𝕊2[𝑹𝑛].  Furthermore, the extensions of Fourier, 𝔉 and Convolution, ℭ insure that all of 

the Schrödinger and Heisenberg theory has a faithful representation on 𝕂𝕊2[𝑹𝑛] .  These issues will be 

discussed more fully in another venue. 

In operator theory on separable Hilbert spaces, the major problem with integration for operator valued functions 

is that these functions need not have a Lebesgue (like) integral. However, they always have a HK-integral (Hille 

and Phillips, 1957). 
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