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Abstract: In this paper, we secure the general solution of the generalized additive 

functional equation 

𝜑    𝑡 =   𝜑(𝑡 + 𝑡 ) − (𝑟 − 2)  
𝜑(𝑡 ) − 𝜑(−𝑡 )

2
 

where 𝑟 is a positive integer with ℕ − {0,1,2,3,4}, and also examine Hyers-Ulam stability 

results by utilizing alternative fixed point for a generalized additive functional equation in 

Banach spaces. 

Keywords: Banach Space, Fixed Point, Hyers-Ulam Stability, Additive Functional 

Equation.  

 

MSC: 39B52, 39B72, 39B82. 

 

 
I. Introduction 

The study of additive functions traces its roots back to Legendre (1791), who first attempted to find 

solutions to the Cauchy functional equation: 

 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)  (1.1)  
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for all 𝑥, 𝑦 ∈ ℝ. A significant advancement in the investigation of the additive Cauchy functional equation was 

made by Cauchy (1821) in his book Cours d' Analyse in 1821. Cauchy demonstrated that every continuous 

additive function 𝑓: ℝ → ℝ is linear, taking the form 𝑓(𝑥) = 𝑚𝑥, where 𝑚 is an arbitrary constant. Further 

insights into real additive functions were provided by Darboux in 1875, demonstrating that a real additive 

function continuous at a point is linear. 

Indeed, additive functions are the solutions to the additive Cauchy functional equation (1.1). In 1985, 

Kuczma made significant contributions and conducted thorough research on additive functions. Furthermore, 

the topic of additive functions has been extensively covered in the books by Aczel (1987, 1996), highlighting 

their importance and relevance in the realm of mathematical analysis. 

Certainly, many functional equations involving at least two factors have general solutions that can be 

expressed in terms of additive, multiplicative, logarithmic, or exponential functions. This versatility in 

functional equations is a powerful tool in mathematical analysis. 

Researchers such as Eshaghi Gordji and colleagues (see (Gordji et. al, 2009), (Gordji et. al, 2010), 

(Gordji and Savadkouhi, 2010)) have made significant contributions to the field by proving the generalized 

Hyers-Ulam stability of various functional equations of mixed types, including quartic, cubic, quadratic, and 

additive equations, in various normed spaces. Their work has broad implications for understanding the stability 

of these equations. 

Jung (1996) has delved into the Hyers-Ulam-Rassias stability of additive mappings and has conducted 

extensive investigations in Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis 

(Jung, 2001). This research has shed light on the stability of functional equations and their applications. 

In 2005, Lee et al. specifically explored quartic functional equations, contributing to the growing body 

of knowledge in this field. These works collectively advance our understanding of the stability and solutions of 

various functional equations. 

Rassias (1982, 1984, 1989, 1992) independently expressed stability of various functional equations in 

some normed spaces. Ulam (1960) proved and investigated functional equations stabilities in the book of “A 

Collection of Mathematical Problem”, which was used for many mathematicians to develop the functional 

equations part. Najati (2007), Najati and Park (2008), Najati and Moghimi (2008), and Najati and Rassias 

(2010) established additive, quadratic, cubic and quartic functional equations stability results in quasi-Banach 

spaces, etc. Some mathematicians were well discussed various functional equations in Banach spaces (see 
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(Aoki, 1950), Rassias (1978, 2000), (Tamilvanan et al., 2020, 2021, 2023)) and few articles are used to develop 

this paper (Czerwik, 1992), (Gajda, 1991), (Gavruta, 1996), (Hyers, 1941), (Hyers et al., 1998), (Kannappan, 

1995). 

In this research, we focus on establishing the general solution for a generalized additive functional 

equation 

 𝜑(∑     𝑡 ) = ∑   𝜑(𝑡 + 𝑡 ) − (𝑟 − 2) ∑  
( ) ( )

 (1.2) 

where 𝑟 is a positive integer with ℕ − {0,1,2,3,4}, in Banach space. Moreover, we conduct a thorough 

examination of Hyers-Ulam stability results by employing an alternative fixed point approach for this specific 

type of functional equation. The exploration of both the general solution and stability aspects contributes to a 

comprehensive understanding of additive functional equations and their stability properties. 

II. General Solution of the Functional Equation (1.2) 

In this segment, we obtain the general solution of the functional equation (1.2). 

Theorem 2.1. Let 𝑁 and 𝐵 be real vector spaces. If the mapping 𝜑: 𝑁 → 𝐵 fulfils the functional equation (1.2) 

for all 𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁, then 𝜑: 𝑁 → 𝐵 fulfils the functional equation (1.1) for all 𝑥, 𝑦 ∈ 𝑁. 

Proof. Let us consider 𝜑: 𝑁 → 𝐵 fulfils the functional equation (1.2). Switching (𝑡 , 𝑡 , 𝑡 , … , 𝑡 ) by 

(0,0,0, … ,0) in (1.2), we acquire 𝜑(0) = 0. Substituting (𝑡 , 𝑡 , 𝑡 , … , 𝑡 ) by (𝑡, 0,0, … ,0) in (1.2), we receive 

𝜑(−𝑡) = −𝜑(𝑡) ∀𝑡 ∈ 𝑁. Therefore, 𝜑 is an odd function. Replacing 

(𝑡 , 𝑡 , 𝑡 , … , 𝑡 ) by (𝑡, −𝑡, 𝑡, −𝑡, 𝑡, 0,0, … ,0) in (1.2) and utilizing the property of odd function, we attain 

 𝜑(2𝑡) = 2𝜑(𝑡) ∀𝑡 ∈ 𝑁.  (2.1) 

Replacing (𝑡 , 𝑡 , 𝑡 , … , 𝑡 ) by (𝑡, 𝑡, 𝑡, 0,0, … ,0) in (1.2) with utilizing (2.1), we obtain 

 𝜑(3𝑡) = 3𝜑(𝑡) ∀𝑡 ∈ 𝑁. (2.2)  

Switching (𝑡 , 𝑡 , 𝑡 , … , 𝑡 ) by (𝑡, 𝑡, 𝑡, 𝑡, 0, … ,0) in (1.2) with utilizing (2.1), we receive 

 𝜑(4𝑡) = 4𝜑(𝑡) ∀𝑡 ∈ 𝑁.  (2.3) 

In general, for any positive integer 𝑛, we acquire 
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𝜑(𝑛𝑡) = 𝑛𝜑(𝑡) ∀𝑡 ∈ 𝑁. 

Now, substituting (𝑡 , 𝑡 , 𝑡 , … , 𝑡 ) by (𝑥, 𝑦, 𝑥, 𝑦, 0, … ,0) in (1.2), we accomplish our needed outcome (1.1). 

In Segments 3 and 4, we take 𝑁 be a normed space and 𝐵 be a Banach space. For the notational effortlessness, 

we define a function Φ: 𝑁 → 𝐵 by 

Φ(𝑡 , 𝑡 , 𝑡 , … , 𝑡 ) = 𝜑     𝑡 −   𝜑(𝑡 + 𝑡 ) + (𝑟 − 2)  
𝜑(𝑡 ) − 𝜑(−𝑡 )

2
 

for every 𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁. 

III. Stability Results for (1.2): Direct Method 

In this segment, we examine the Hyers-Ulam stability of the generalized additive functional equation 

(1.2) in Banach space by means of direct method. 

 

Theorem 3.1. Let 𝛾 ∈ {−1,1} and 𝜇: 𝑁 → [0, ∞) be a function such that 

 
𝜇(2 𝑡 , 2 𝑡 , … , 2 𝑡 )

2
 

converges in ℝ with 

 𝑙𝑖𝑚
→

 
, ,…,

= 0 ∀𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁. (3.1)  

If 𝛷: 𝑁 → 𝐵 is a function fulfilling the inequality 

 ∥∥𝛷(𝑡 , 𝑡 , … , 𝑡 )∥∥ ≤ 𝜇(𝑡 , 𝑡 , … , 𝑡 ) ∀𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁.  (3.2) 

Then there exists a unique additive mapping 𝛤: 𝑁 → 𝐵 which fulfils the functional equation (1.2) and 

 ∥ 𝜑(𝑡) − 𝛤(𝑡) ∥≤ ∑  
, , , , , ,…,

  (3.3) 

for all 𝑡 ∈ 𝑁. 

Proof. Assume that 𝛾 = 1. Switching (𝑡 , 𝑡 , … , 𝑡 ) by (𝑡, −𝑡, 𝑡, −𝑡, 𝑡, 0, … ,0) in (3.2), we have 
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 ∥ 2𝜑(2𝑡) − 4𝜑(𝑡) ∥≤ 𝜇(𝑡, −𝑡, 𝑡, −𝑡, 𝑡, 0, … ,0) ∀𝑡 ∈ 𝑁. (3.4)  

From (3.4), we simply get 

 ∥
∥ ( )

− 𝜑(𝑡)∥
∥ ≤

( , , , , , ,…, )
 ∀𝑡 ∈ 𝑁. (3.5)  

Replacing 𝑡 by 2𝑡 in (3.5), we obtain 

 ∥∥
∥ − 𝜑(2𝑡)∥∥

∥ ≤
( , , , , , ,…, )

∀∈ 𝑁.  (3.6) 

From (3.6), we achieve 

 ∥∥
∥ −

( )

∥∥
∥ ≤

( , , , , , ,…, )
∀𝑡 ∈ 𝑁.  (3.7) 

Adding together (3.5) and (3.7), we get the following outcome 

 ∥∥
∥ − 𝜑(𝑡)∥∥

∥ ≤ 𝜇(𝑡, −𝑡, 𝑡, −𝑡, 𝑡, 0, … ,0) +
( , , , , , ,…, )

 ∀𝑡 ∈ 𝑁. (3.8)  

It follows from (3.5), (3.7) and (3.8), we can generalizing that as follows 

 
∥
∥ ( )

− 𝜑(𝑡)∥
∥ ≤ ∑    

, , , , , ,…,
 ∀𝑡 ∈ 𝑁

∥
∥ ( )

− 𝜑(𝑡)∥
∥ ≤ ∑    

, , , , , ,…,
 ∀𝑡 ∈ 𝑁.

  (3.9) 

In order to establish convergence of the sequence , replacing 𝑡 by 2 𝑡 also dividing by 2  in (3.9). We 

then deduce that, for any 𝑙, 𝑚 > 0, 

 

∥∥
∥

( )
−

( )

∥∥
∥ = ∥∥

∥ − 𝜑(2 𝑡)∥∥
∥

 ≤ ∑    
, , , , , ,…,

( )

 ≤ ∑    
, , , , , ,…,

( )

 → 0 as 𝑚 → ∞

  (3.10) 

for all 𝑡 ∈ 𝑁. Therefore, the sequence  is a Cauchy sequence. As 𝐵 is complete, there exists a mapping 

Γ: 𝑁 → 𝐵 such that Γ(𝑡) = lim →    ∀𝑡 ∈ 𝑁. Taking 𝑙 → ∞ in (3.9), we attain the outcome that (3.3) holds 
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for all 𝑡 ∈ 𝑁. To confirm that Γ fulfils (1.2), replacing (𝑡 , 𝑡 , … , 𝑡 ) by (2 𝑡 , 2 𝑡 , … , 2 𝑡 ) also dividing by 2  

in (3.2), we attain 

1

2
∥∥Φ(2 𝑡 , 2 𝑡 , … , 2 𝑡 )∥∥ ≤

1

2
𝜇(2 𝑡 , 2 𝑡 , … , 2 𝑡 ) ∀𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁. 

Letting 𝑙 → ∞ in the above inequality with utilizing the definition of Γ(𝑡), we observe that Γ(𝑡 , 𝑡 , … , 𝑡 ) =

0 ∀𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁. Thus Γ fulfils (1.2). To illustrate that Γ is unique, let Ω(𝑡) be an another additive mapping 

fulfilling (1.2) also (3.3). Then 

∥ Γ(𝑡) − Ω(𝑡) ∥ ≤
1

2
∥∥Γ(2 𝑡) − 𝜑(2 𝑡)∥∥ + ∥∥𝜑(2 𝑡) − Ω(2 𝑡)∥∥

 ≤
1

4
   
𝜇(2 𝑡, −2 𝑡, 2 𝑡, −2 𝑡, 2 𝑡, 0, … ,0)

2( )

 → 0 as 𝑚 → ∞

 

for all 𝑡 ∈ 𝑁. Therefore, Γ is unique. Now, switching 𝑡 by  in (3.4), we have 

 ∥
∥2𝜑(𝑡) − 4𝜑 ∥

∥ ≤ 𝜇 , − , , − , , 0, … ,0  ∀𝑡 ∈ 𝑁.  (3.11) 

The rest of the proof is similar to that when 𝛾 = 1. So, for 𝛾 = −1, we can demonstrate the consequence 

through homogeneous procedure. This accomplished the proof of the theorem. 

The upcoming corollary is an instantaneous outcome of Theorem 3.1 regarding the stability for the equation 

(1.2). 

Corollary 3.2. Let 𝛼 and 𝛽 be positive real numbers. If there exists a function 𝛷: 𝑁 → 𝐵 fulfilling the inequality 

 ∥∥𝛷(𝑡 , 𝑡 , … , 𝑡 )∥∥ ≤

𝛼

𝛼 ∑    ∥∥𝑡 ∥∥

𝛼 𝛱 ∥∥𝑡 ∥∥ + ∑    ∥∥𝑡 ∥∥
 (3.12)  

for all 𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁, then there exists a unique additive function 𝛤: 𝑁 → 𝐵 such that 

 ∥ 𝜑(𝑡) − 𝛤(𝑡) ∥≤

⎩
⎪
⎨

⎪
⎧| |

∥ ∥

∣ ∣ ; 𝛽 ≠ 1

∣ ∥

∣
; 𝛽 ≠

 (3.13)  
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for all 𝑡 ∈ 𝑁. 

IV. Stability Results for (1.2) : Fixed Point Method 

In this segment, we scrutinize the generalized Hyers-Ulam stability of the generalized additive functional 

equation (1.2) in Banach space through fixed point method. 

Theorem 4.1. Let 𝛤: 𝑁 → 𝐵 be a mapping for which there exists a function 𝜇: 𝑁 → [0, ∞) and 

 𝑙𝑖𝑚
→

 
, ,…,

= 0,  (4.1) 

where 𝜙 =
  

   
 and such that it fulfils the inequality 

 ∥∥𝛤(𝑡 , 𝑡 , … , 𝑡 )∥∥ ≤ 𝜇(𝑡 , 𝑡 , … , 𝑡 ) ∀𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁.  (4.2) 

If there exists 𝐿 = 𝐿(𝑎) such that 

𝑡 → 𝜎(𝑡) =
1

2
𝜇

𝑡

2
, −

𝑡

2
,
𝑡

2
, −

𝑡

2
,
𝑡

2
, 0, … ,0  

has the property 

 
( )

= 𝐿𝜎(𝑡) ∀𝑡 ∈ 𝑁.  (4.3) 

Then there exists a unique additive function 𝛤: 𝑁 → 𝐵 fulfilling (1.2) and such that 

 ∥ 𝜑(𝑡) − 𝛤(𝑡) ∥≤ 𝜎(𝑡) ∀𝑡 ∈ 𝑁.  (4.4) 

Proof. Choose the set 𝜒 = {𝑦/𝑦: 𝑁 → 𝐵, 𝑦(0) = 0} and initiate the generalized metric on 𝜒, 𝑑(𝑦, 𝑧) = inf{𝑙 ∈

(0, ∞): ∥ 𝑦(𝑡) − 𝑧(𝑡) ∥≤ 𝑙𝜎(𝑡), 𝑡 ∈ Γ}. It is simple to observe that (𝜒, 𝑑) is complete. Define 𝜂: 𝜒 → 𝜒 by 

𝜂𝑦(𝑡) = 𝑦(𝜙 𝑡) ∀𝑡 ∈ 𝑁. For 𝑦, 𝑧 ∈ 𝜒 and 𝑡 ∈ 𝑁, we have that 

𝑑(𝑦, 𝑧) =𝑙 ⇒∥ 𝑦(𝑡) − 𝑧(𝑡) ∥≤ 𝑙𝜎(𝑡) ⇒
∥
∥
∥𝑦(𝜙 𝑡)

𝜙
−

𝑧(𝜙 𝑡)

𝜙 ∥
∥
∥

≤
1

𝜙
𝑙𝜎(𝜙 𝑡)

 ⇒∥ 𝜂𝑦(𝑡) − 𝜂𝑧(𝑡) ∥≤
1

𝜙
𝑙𝜎(𝜙 𝑡) ⇒ 𝑑(𝜂𝑦(𝑡), 𝜂𝑧(𝑡)) ≤ 𝑙𝐿
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That is, 𝑑(𝜂𝑦, 𝜂𝑧) ≤ 𝐿𝑑(𝑦, 𝑧). Accordingly, 𝜂 is a strictly contractive mapping on 𝜒 with Lipschitz constant 𝐿. 

It is follows from (3.4) that 

 ∥ 2𝜑(2𝑡) − 4𝜑(𝑡) ∥≤ 𝜇(𝑡, −𝑡, 𝑡, −𝑡, 𝑡, 0, … ,0) ∀𝑡 ∈ 𝑁.  (4.5) 

It is follows from (4.5) that 

 ∥
∥ ( )

− 𝜑(𝑡)∥
∥ ≤

( , , , , , ,…, )
∀𝑡 ∈ 𝑁.  (4.6) 

Utilizing (4.3) for the case 𝑎 = 0, our outcome is reduced to 

 ∥
∥𝜑(𝑡) −

( )
∥
∥ ≤ 𝜎(𝑡) ⇒∥ 𝜑(𝑡) − 𝜂𝑦(𝑡) ∥≤ 𝐿𝜎(𝑡) ∀𝑡 ∈ 𝑁.   

So, we obtain the outcome that 

 𝑑 𝜂𝜑(𝑡), 𝜑(𝑡) ≤ 𝐿 = 𝐿 < ∞ ∀𝑡 ∈ 𝑁. (4.7) 

Replacing 𝑡 by  in (4.6), we have 

 ∥
∥ ( )

− 𝜑 ∥
∥ ≤

, , , , , ,…,
 ∀𝑡 ∈ 𝑁.  (4.8) 

Utilizing (4.3) for the case 𝑎 = 1, our outcome is reduced to 

 ∥
∥2𝜑 − 𝜑(𝑡)∥

∥ ≤ 𝜎(𝑡) ⇒∥ 𝜂𝜑(𝑡) − 𝜑(𝑡) ∥≤ 𝜎(𝑡) ∀𝑡 ∈ 𝑁.   

Therefore, we acquire the outcome that 

 𝑑 𝜑(𝑡), 𝜂𝜑(𝑡) ≤ = 𝐿  ∀𝑡 ∈ 𝑁.  (4.9) 

Utilizing (4.7) with (4.9), we can conclude 

 𝑑 𝜑(𝑡), 𝜂𝑦(𝑡) ≤ 𝐿 < ∞ ∀𝑡 ∈ 𝑁.  (4.10) 

Now from the fixed point alternative theorem, it follows that there exists a fixed point Γ of 𝜂 in 𝜒 such that 

 Γ(𝑡) = lim
→

  ∀𝑡 ∈ 𝑁.  (4.11) 
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In order to establish Γ: 𝑁 → 𝐵 fulfils (1.2), we use an argument similar to that in the proof of Theorem 3.1. As Γ 

is a unique fixed point of 𝜂 in the set Δ = {𝜑 ∈ 𝜒/𝑑(𝜑, Γ) < ∞}, Γ is a unique function such that 

𝑑(𝜑, Γ) ≤
1

1 − 𝐿
𝑑(𝜑, 𝜂𝜑) ⇒ 𝑑(𝜑, Γ) ≤

𝐿

1 − 𝐿
⇒∥ 𝜑(𝑡) − Γ(𝑡) ∥≤

𝐿

1 − 𝐿
𝜎(𝑡) 

for all 𝑡 ∈ 𝑁. This accomplished the proof of the Theorem. 

The upcoming corollary is an instantaneous outcome of Theorem 4.1, regarding the stability for the equation 

(1.2). 

Corollary 4.2. Let 𝛼 and 𝛽 be positive real numbers. If a function 𝛷: 𝑁 → 𝐵 fulfils the inequality (3.12) for all 

𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁, then there exists a unique additive function such that (3.13) for all 𝑡 ∈ 𝑁. 

Proof. We set 

𝜇(𝑡 , 𝑡 , … , 𝑡 ) ≤

⎩
⎪⎪
⎨

⎪⎪
⎧

𝛼

𝛼    ∥∥𝑡 ∥∥

𝛼 Π ∥∥𝑡 ∥∥ +    ∥∥𝑡 ∥∥

 

for all 𝑡 , 𝑡 , … , 𝑡 ∈ 𝑁. Now 

𝜇(𝜙 𝑡 , 𝜙 𝑡 , … , 𝜙 𝑡 )

𝜙
=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝛼

𝜙
,

𝛼

𝜙
   ∥∥𝜙 𝑡 ∥∥

𝛼

𝜙
Π ∥∥𝜙 𝑡 ∥∥ +    ∥∥𝜙 𝑡 ∥∥

                                             =
→ 0  as  𝑙 → ∞
→ 0  as  𝑙 → ∞
→ 0  as  𝑙 → ∞

 

i.e., (4.1) holds. As we have 

𝜎(𝑡) =
1

2
𝜇

𝑡

2
, −

𝑡

2
,
𝑡

2
, −

𝑡

2
,
𝑡

2
, 0, … ,0  

then 
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𝜎(𝑡) =
1

2
𝜇

𝑡

2
, −

𝑡

2
,

𝑡

2
, −

𝑡

2
,
𝑡

2
, 0, … ,0 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝛼

2
,

𝛼 ∥ 𝑡 ∥

2(2 )

𝛼 ∥ 𝑡 ∥

2(2 )
.

, 

Also, 

1

𝜙
𝜎(𝜙 𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝛼

2𝜙
,

𝛼

2𝜙

𝛼 ∥ 𝑡 ∥ 𝜙

2
,

𝛼

2𝜙

𝛼 ∥ 𝑡 ∥ 𝜙

2
,

=

𝜙 𝜎(𝑡)

𝜙 𝜎(𝑡)

𝜙 𝜎(𝑡)

 

for all 𝑡 ∈ 𝑁. As the inequality (1.2) holds for the following cases: 

𝐿 = 2  if 𝑎 = 0 and 𝐿 = 2  if 𝑎 = 1; 

𝐿 = 2  for 𝛽 < 1 if 𝑎 = 0 and 𝐿 = 2  for 𝛽 > 1 if 𝑎 = 1; 

𝐿 = 2  for 𝛽 <  if 𝑎 = 0 and 𝐿 = 2  for 𝛽 >  if 𝑎 = 1. 

Now from (4.4), we verify the following cases: 

Case 1: 𝐿 = 2  if 𝑎 = 0. 

∥ 𝜑(𝑡) − Γ(𝑡) ∥≤ 𝜎(𝑡) =
( )

= . 

Case 2: 𝐿 = 2 if 𝑎 = 1. 

∥ 𝜑(𝑡) − Γ(𝑡) ∥≤ 𝜎(𝑡) =
( )

= − . 

Case 3: 𝐿 = 2  for 𝛽 < 1 if 𝑎 = 0. 

∥ 𝜑(𝑡) − Γ(𝑡) ∥≤ 𝜎(𝑡) =
∥ ∥

=
∥ ∥

. 

Case 4: 𝐿 = 2  for 𝛽 > 1 if 𝑎 = 1. 
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∥ 𝜑(𝑡) − Γ(𝑡) ∥≤ 𝜎(𝑡) =
∥ ∥

=
∥ ∥

. 

Case 5: 𝐿 = 2  for 𝛽 <  if 𝑎 = 0. 

∥ 𝜑(𝑡) − Γ(𝑡) ∥≤ 𝜎(𝑡) =
∥ ∥

=
∥ ∥

. 

Case 6: 𝐿 = 2  for 𝛽 >  if 𝑎 = 1. 

∥ 𝜑(𝑡) − Γ(𝑡) ∥≤ 𝜎(𝑡) =
∥ ∥

=
∥ ∥

. 

Hence the proof is accomplished. 
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