3
%— V TANAGPE

%‘% SINCE 2016
Dera Natung Government College Research Journal ISSN (Print): 2456-8228
Volume 9 Issue 1, pp. 13-27, January-December 2024 ISSN (Online): 2583-5483

Research Article
Paranormed spaces of absolute tribonacci summable series and some matrix
transformations

Fadime Gokge”
Faculty of Science, University of Pamukkale, Denizli, Turkey.

Cite as: Gokge, F. (2024). Paranormed Abstract: In a more recent paper, the absolute series space |T(p|q which is defined as the

spaces of absolute tribonacci summable domain of the matrix corresponding to the absolute Tribonacci summability in the well-

series and some matrix transformations, known space [, has taken place in the literature (Gokce, 2025). The present study is

Dera Natung Government College

Research Journal, 9, 13-27.
https://doi.org/10.56405/dngcrj.2024.09. set of all series summable by the absolute Tribonacci method in 1(6), and to investigate its

mainly aimed to establish the absolute series space |T,|(8) which includes |T<p|q, as the

01.02 some topological and algebraic properties. Moreover, certain characterizations of matrix

Received on: 18.01.2024 operators on this space is obtained.

Revised on: 13.03.2024,
Accepted on: 09.07.2024,
Available online: 30.12.2024.

*Corresponding Author: Fadime Gokce  MSC 2020: 40C05, 40F05, 46 A45.
(fgokce@pau.edu.tr)

Keywords: Absolute Summability, Matrix transformations, Maddox’s space, Tribonacci
numbers.

1. Introduction

The theory of summability, which has been used in many fields of science from the past to the present, has
expanded with the sequence spaces generated by summability methods and matrix transformations on these
spaces on the one hand, and on the other hand, it has continued to progress with the study of new series spaces
defined by absolute summability methods and some matrix transformations related to them (see (Dagh and
Yaying, 2023), (Gokge, 2021; 2022), (Gokege and Sarigol, 2018; 2018a; 2019; 2019a; 2020; 2020a; 2020b),
(Sanigol, 2010), (Yaying and Kara, 2021), (Yaying and Hazarika, 2020). In this paper, the absolute series
space |T,|(8) is established as the set of all series summable by the absolute Tribonacci method, and its some

algebraic and topological structure such as FK-space, duals and Schauder base are given. Furthermore, certain

characterizations of matrix operators on the space are obtained. Firstly, let us remind some basic concepts.
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By w,l,,c and [, (q =1), we stand for the set of all sequences of complex numbers, the sequence
spaces of all bounded, convergent sequences and also the space of all g-absolutely convergent series. Besides,
throughout the paper, N = {0,1,2,3,...}. Let A = (4;;) be an arbitrary infinite matrix of complex components

and U,V be two subspaces of w. If the series

A; (w) = Z Ay
i=0

converges for all jeN, then, it is said that the A -transform of the sequence u = (u;) is identified by A(u) =
(Aj (w)). Also, it is said that A describes a matrix transformation from the space U into the space V, and the
class of all infinite matrices A : U — V is represented by (U, V).

Ifr; =0 for i >j and otherwise r; # 0 forall j, i, then it is said that R is a triangle.

The notion of the multiplier space of U and V is identified by

SWV)={z=(z)€ew:VueUuz=(yz)eV}

and according to the notation of multiplier space, the a, 8 and y duals of U are defined as

Us=5WU,D)=43z=(z)€ew:vVu=(y)e€ U,Z|u,-zj| <o
=0

n
UP =SU,c) =3z=(z)€ a:Vu=(y) €U, Zujzj Ecy,
=0

n
U =S(U,bs)=4z=(z)€ o:vu=(y) €U, Zujzj € l,
j=0

Here, ¢, and b, represent the set of all convergent and bounded series, respectively.
The set
Up={u=(u)€ w: AW € U}
defines domain of an infinite matrix A in U. This is another important concept. It is clear that the set also
determines a sequence space.

A linear topological space (also called a topological vector space) is both of a topological space and a
vector space such that the properties of scalar multiplication and vector addition are continuous. Assume that U
is atopological vector space over R. Foralla € Rand ii,u € U, if

e f:U - Rsuchthat f(0) =0, f(uw) = f(—uw)

e flu+®<f@+f(@
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e |la,—al-0, f(u,—u) - 0imply f(a,u, —au) - 0 asn - oo, that is the scalar multiplication is
continuous
then, it is said that U is a paranormed space.
Let U c w. If it is a Frechet space with continuous coordinates R;: U — C, where R;(u) = u; for all u €
U,j € N, then it is said that U is an FK-space. Also, an FK-space whose metric also determines a norm is said
to be a BK-space. In several areas of summability theory, these concepts play an important role, for instance, all
matrix transformations from an FK-space to another FK-space are continuous (Wilansky, 1984). If there
exists unique sequence of coefficient (u;) such that
lim ) w;b; =u,

jooo
i=0

for all u € U, then (b;) is called a Schauder base of an FK-space U. For an example to these concepts, it can
be said that the sequence (e®) whose terms given by

(l')_l, j=i
€ _{Q j#i

for i > 0, is the Schauder base of the Maddox space [(§). The Maddox space [(&) can be expressed clearly as

follows:
1(6) =qu= (uj):Z|uj| T < ooy,
j=0

With the natural paranorm of the space

o0 P

e ={ > lyl” ],

j=0

the Maddox space 1(5) is an FK-space where P = max { 1, sup §;}. In addition to this, in the case of §; > 1
j

for each j, the space becomes a BK- space with the following norm (see (Maddox, 1967;1968;1969))

. &
lull = inf{o > 0:Z|uj/g| T<1
=0

Unless otherwise stated, throughout the whole study, we assume that A = (4;;) is an infinite matrix of complex

components for all j,i € N, (y;) and (¢;) are any sequences of positive numbers, n = (n;) and, & = (8;) are
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bounded sequences of positive real numbers with 0 <infn; <h < 0,0 <infd; <m <o and 1/5_ +
]
1/6]-* =1for §; >0, 1/6]-* =0for §; = 1.

On the other hand, Tribonacci numbers, which constitute the other branch of the study are very interesting.
Tribonacci numbers determine a sequence of integers defined by the third order recurrence relation with initial
conditions

to=1,t, =1,t, =2,
ti=ti1+tio+t3
t_;=0,i>0.
So, some of the first Tribonacci numbers as follows:
1,1,2,4,7,13,24,44 ---.

Furthermore, Tribonacci numbers have the following useful properties:

J
izfl

i=0

J
iyt —1
ty; = z ,

i=0

t.
lim — = 0.54368901 ...

Jootjyg
In addition to these properties, Tribonacci matrix T = (tﬁ) has recently been defined by Yaying and Hazarika

(2020) as follows:
2t;
tiygatti—1
0, P>

,0<5i <y
ji =
where t; is the ith Tribonacci number for all ieN.

Let take the series ¥ u; with the sequence of its jth partial sum s = (s;), and let ¢ = (¢;) be arbitrary

sequence of positive real numbers, § = (6j) be a bounded sequence of positive real numbers. If

[ee)

Oi_ ;i
Do ) = AL @ <o

j=1
the series ), u; is said to be summable |A, (pj|(5) (Gokce & Sarigol, 2018a). Obviously, the summability
method |A, (pj|(6) is a very comprehensive method such that it includes a number of well-known absolute

summability methods for special choices of the matrix A and the sequences ¢, 8. To give a few examples, we
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can present: if we chose just a triangle matrix T instead of A, the summability method |T, <pj|(6) IS
immediately obtained with &; = k for all j (Gokee, 2022), again if we select the Euler, Nérlund, Cesaro, the

:|(8) is reduced to the summabilities

weighted mean matrices

|E™, 9,1(8), [N, pj,0|(8), IC,a,BI(8) (with ¢; = , 95| (8) (Gokee & Sangdl, 2018;

2018a; 2019; 2019a), respectively, (see also (Gokee, 2021; 2022), (Gokee and Sarigol, 20205 2020a; 2020b)).
Finally, we present some lemmas that will be used in the proofs and then move on to the main parts:

Lemma 1.1. (Grosse-Erdmann, 1993) Let § = (6;) and n = (n;) be any bounded sequences of strictly positive

numbers.
(i If 6; > 1 for each i, then, A € (1(6), 1) iff there exists an integer ¢ > 1 such that
o e
sup Z leﬁ ¢!l :G cN finite p < oo. (D
i=0 | jeG

(i) Ifn; =1 and §; <1 foreachi € Nthen, A € (I(8),1(n)) iff there exists some ¢ such that

-1 n
supZ|/1 c /5 J<oo

(iii)  If 6; < 1forall i, then,

(a) limA;; exists for each i
j—oo

A € (U(6),c) & 5;

(b) sup|A;| ™ < oo
J,t

(c) limAj; =0 for eachi,
A€ (1(6),¢cy) & jooo
(b) holds

A € (1(6),ln) © (b) holds.

(iv) If 5; > 1 for all i, then,

A€ (I(8),c) & (a) limAj; exists for each i, (b") there exists anumber ¢ > 1suchthat

j—oo
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A€ (1(8),co) © (¢") limA;; =0 for eachi, (b") holds

j—

A€ (1(6),¢cy) © (b") holds.
It should be noted that condition (1) presents a number of difficulties in terms of its application. However,
Lemma 1.2, which gives a condition equivalent to (1) and is more practical in most cases, will be preferred in

the proofs of our theorems.

Lemma 1.2. (Sangol, 2013) Let A = (4;;) be an infinite matrix with complex components, § = (5;) be a

bounded sequence of positive numbers. If W5 [A] < o orLs [A] < o, then

Cm)2Ws [A] < Ls [A] < W5 [A],

where m = max{1, 21}, M = sup; 6.

i

. 5
Ws[A] = Z Z|Aji|

i=0 \ j=0
and

i

)
Ls[A]=sup Z Zﬁﬁ : G C N finite ;.
i=0

jeG

Lemma 1.3. (Malkowsky & Rakocevic, 2000) Let R be a triangle. Then, for U,V c¢ w,A € (U, V) iff B =
RA € (U,V).

Lemma 1.4. (Malkowsky & Rakocevic, 2007) Let U be an FK-space with AK property, R be a triangle with
its inverse S and V < w. Then, we have A € (Ug,V) ifand onlyif A € (U,V) and V&) € (U,c¢) for all k,

where

/T{kp = z Akisip ) k,p = 0,1,
i=p

m
200 zﬂkisip'o s=p=m
i=v

mp

0, p>m
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2. Main Results

In this part of the article, we will first establish the absolute Tribonacci summability method combining the
concepts of absolute summability and Tribonacci matrix. To obtain this method, let us take the series ), u; and

its partial sums s;. Then we get

Jj=0 i=0 Jj=i =0 j=i
and so,
m m 2t m-—1 m-—1 2t
AN, (s) = Z u; Z 4 - u; !
- —d btz T tm — 1 e - tm+1 T tm—1 — 1
i=0 Jj=i =0 j=i
2t m-1 2t m-—1
= = Uy + U; e + Aoy, Z 2t;
m+2 T L 1 =0 tmyz +t;m 1 T=i
m
= Z Ui Py
i=0
where
( 2ty
, i=m
tmiz Tt — 1
o, =1 2t =
e e +A0m22t,0<L<m—1
tm+2 + tm 1 o
j=i
\ 0, i>m,
A 1
Oy, = Oy, — Opyq, Oy = .
m m m—-1%m tmag + bty — 1

With all of these informations, we can express the absolute Tribonacci series space as the set of all series

summable by this method as follows:
j j
|T|(6)— UEW: Z(p' Zuicbﬁ < 00 p,

i=0

Furthermore, we can write

(E® o T),(u) = <o,./ GIORY M)

where
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J
v=i
0, >,
( s
I_(pj/], i=]—1
)
o ={ iy o 3)

| o/, i=j

So, according to the notation of domain, the space redefines as |T,,|(6) = (1(8)) 5. ;-

Also, it is known that there exists a unique inverse matrix which also is a triangle for every triangle matrix.

So, it can be easily seen that the terms of inverse of the matrices Tand E(® are as follows:

( 1 o
1 1 ) 1
. — - (=] —
tjl'l = < 20-]_1t] 20-]‘_1tj_1
1 =i
_—, 1 :] J—
ZO—j—th—l
\0, otherwise,
1 -1 I
5 - i . .
(ej(i )) =lo 0<i<j
0, i >].

From this point on, we can start to state and prove the following theorems which give some algebraic and

topological properties of the mentioned space.

Theorem 2.1.
(@  The set |T(p|(6) is a linear space with the scalar multiplication and coordinate-wise addition. Also, the

space |T(p|(6) becomes an FK-space under the paranorm

olR

oo

~ ~ 6;
||u|||r<,,|(5) =[|E® T(“)”z(a) = Z |(E(6) 0 T(u))fl j

Jj=0

where P = max{ 1, sup §;}.
J
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(b) If8; = q for all jeN, the space |T,,|(8) is a BK-space with the following norm

lulli, i) = | E@ =T
Proof. The first part of the proof is a standard verification, so it is omitted. Since the matrices E®,T are
triangles, it is clear that the composite function E(® o T is also triangle. Furthermore, since 1(8) is an FK-space,

then it can be written from Wilansky's Theorem 4.3.2 (1984) that |T,|(8) = (1(8)) is also an FK-space.

E(S)o'f
This concludes the proof.
A similar method can be used to prove the remaining part of the theorem.

Theorem 2.2. The absolute series space |T(p|(6) has a Schauder basis b whose terms are given by

( s 1 1 1 _
. "’ ( - - - ), j<m-2
J 2O-mtm ZUm—ltm Zam—ltm—l 2O-m—ztm—l
0 _1/5;,1_1( 1 1 1 ) . L
by, =1{¥m-1 20mtm  20m_1tm 20m_1tm-1/’ J=m
Vs, 1 .
mo 20mt, J=m
. 0, j>m.

Proof. It is noted that the sequence (e(”) is the Schauder base of the Maddox's space 1(8). So, it follows from
Theorem 2.3 in (Malkowsky & Rakocevic, 2007), b)) = (T,;1((E®)~1(e)) determines the Schauder base
of | T, |(8).

Theorems 2.1 and 2.2 give us the result that the absolute series space |T¢,|(6) is a separable space because the

space is a linear metric space with a Schauder base.

Theorem 2.3. The space |T,|(8) is linearly isomorphic to the Maddox's space 1(8) i.e., |T,|(8) = 1(8).

Proof. In order to prove the theorem, it should be shown that there is a linear bijection between |T¢|(6) and
1(86). Let consider the transformations T:|T,|(8) - (l(&))E(s),E(‘S):(l(6))E(5) - [(8§) and the matrices
corresponding to them defined by (2) and (3). It is clear that the composite function E(® o T is also triangle

and so the composite function E® o T is a linear bijective operator. Moreover,
_ 8 o T
”u”|T(p|(6) = ” E®o T(u)”

that is, the paranorm is preserved. So, the proof is completed.

1(8)

At this point, we describe the following sets and notation:
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1 1 1 1
th oj th_1 Oj-1
5
1 1 1 & i
20i41tiy1 20itipq 204t 20it;

D, = {g - (81) Cw: Sup {(pl o < j=it2 g]< : A (%) B Ztll'—lA(afl_l)>‘
+ 2;iti|)} < oo},
1

/8
D3={e=(ej)6wzflc>1: sup(c 2
m \ #m-

1
_/61‘
D1 = {g = (Ej) Ew:3c>1 ,Z;x;o% ( })'o=i+2

1 1 1
+| et (G~ s~ )|
20i41tiy1 20itipq 204t

=) ok
c 'dm

Pm

&
- m La(L)-—a ()|

o ‘fm + Xtz & <ZA<0’_]) B th—lA(Uj_1>> =%y
D—e—(e')Ew'su 1/6* §i+2J A(i)_ 1 A(l)
S E S AR A A U C R Proivy el e

Sm-1 1

+ |0

|€m—1|67*n_1 +

X
Em |8m

20mtm

Zmz

8;

1
Sm-1
‘q)m 1 ém—l

D = {g = (gj) Ew:Yiiz& (%A (%) — 2t,1-—1 A (Uj1_1>> exist for all i},

f' _ _&i + fit1  _ _€i+1  _ Ei41 (4)
l - ]
20it;  20j41tiy1 20t 204

Similarly, when 2;; is used instead of &; in (4), the notation fl.(j) will be used instead of ¢;.

Theorem 2.4. If §; > 1 for all i, then

(7,1} = D {|7,|8)) = D5 n D5, {|T,|(5)) =

and if §; < 1 for all i, then,

{|T<p|(6)}a = DZ'{|T¢|(5)}B = Dy N D5'{|T¢|(5)}y =

Proof. Considering the definition of the /8 dual, it can be written immediately that & e{|T,,|(8)}’ if and only if

(gju;)ecs for all ue|T,|(8). It follows from the inverses of T and E(® that

Z Z Yi-1 Yj1 N YVj-2
Zat 20 1t 20i4t_1 2055t 4

1%
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- -1 B 1 -
_ii(p Us; gz mz i o s; &z mz i 0 Ysr gz
) " b L 204 T P

£=0 j=t 29t & j=i+1 20j-1t; £ jiH 20j-1tj—1
m—-2 m
/sr &z
* z @i 20;_ot;
i=0 j=i+2 Jj=2%j
-1
/6;”8 15
m X
- TZnO'mtm Zm+(,0m_1 1fm—lzm—1
-2
T (e )
Q; ' —Al— | —— Z;
i=0 L l fe) 2t; \20;) tji-1 \Gj- '
m
= meizi (y= T(u),z = E(s)(y))
i=0
where
r—1/6;€+z<1A<1> 1 <1>) i s
q) 2. 1 ) =1 m—
i 2 &, Zt] O'] th_1 O—]._1
-1
/5% .
fmi = < (pm_lm 1€m—1; i=m— 1
S
200tm
: 0, I >m.

So, it is written that z € {|T(p|(6)}ﬁ if and only if F = (f;) € (1(8),¢). Using Lemma 1.1, we get that ¢ €

{|T(p|(6)}ﬁ equals to e € D; N Dg for §; > 1 and & € D, N D5 for §; < 1 for all i, which completes the part
of the proof.

Because the proof of other parts can be proved in similar way, so it is left to reader.

Theorem 2.5. Assume that (§;) is any bounded sequences of positive numbers for i € N. Also, H = (h,; ) be

a matrix satisfying the following relation
n
5n
i = 03/ > D 5)
j=0

Then, 4 € (U, |T,|(8)) iff H € (U,1(8)).

Proof. Lettake u € U. Taking into consideration the equation (5), it is obtained immediately
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_ _&n
z hpiw; = @, z Dy z Ajiuy,
i=0 =0 =0

and also H,(u) = (E® o T),(A(w)) for u € U. So, A,(w) € |T,|(6) whenever u € U equalsto H,(u) €

1(8) whenever u € U. This concludes the proof of the theorem.

Theorem 2.6. Assume that (§;) and (n;) are bounded sequences of positive numbers with §; <1 andn; > 1

and also AM = EMoTo A If A€ (|T(p|(6), |T1,,|(n)), then A defines a bounded linear operator L, such

that L,(u) = A(u) forall u € |Ty|(1),and A € (|T(p|(6), |T¢|(n)) if and only if there exists an integer ¢ > 1

such that, for all n,

i/l 1A ! ! A ! ist for all i 6
nj 2t \a 20, o, exist for all i, (6)

j=i+2
i

m
~1/87 [ ¢ z EVEANEE SN 1Sy |0
sup| |9, &t <2tj 5) 265" \o +|<pm_1 s‘m-1|

j=it+2

185, A om
- nm
e < 7
+|<,0m ZO'mtm| > © D

~ Mn
supz |c‘1/5ilg7i)| < oo, (8)
L
n=0

Proof. Since |T,|(8), |T,,|() are FK spaces, to prove the first part of the theorem it is sufficient to consider

Theorem 4.2.8 of Wilasky (1984), A determines a linear bounded operator L,. To prove the second part of

theorem consider Ae(|T(p|(6),|T¢|(n)). By Lemma 1.4, it is obtained immediately that A€

(|T¢,|(6), |T¢|(n)> ifand only if A € (l(&), |T¢|(n)) and V™ e (1(8), c) where
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SR PN A S SR
e M20it; | \2041ti41 203ty 20:t)
S ERYE IR ) W
\=—A(—] - — n,i=0,1,..
A\ A% 2\
( -1 m
/5% 1 1 1 1
(g Z <Z_t- <;>—2t' A(@—)) 0<i<m-2
j=i+2 ] ] ]_1 ]_1
(n) o
n m—1 (N ,
_1/6:11
m Anm .
i=m
20,tm
\ 0, i >m.

If we apply the Lemma 1.1 to the matrix V™, we get the conditions (6) and (7). On the other hand, since
T, | (D) = (1(77))5(11)071 for u € 1(8), A@) € |T,|(n) if and only if A (w) = EM™ o T o A(u) € I(n), and so

AM e (1(5), l(n)). Hence, the last statement gives us the condition (8) with Lemma 1.1 which concludes the

proof.

Theorem 2.7 Assume that (§;) is a bounded sequence of positive numbers with &; > 1 and also A® =

EMoToA If A€ (|T,|(6),|Ty|), then A defines a bounded linear operator L, such that L,(u) = A(w) for

all ue|T,|(8). Also, A € (|T,|(8),|Ty|) if and only if there exists an integer ¢ > 1 such that, for all n,

i/l 1A<1> ! A<1> st for all i 9
i\5-Al = — — | |exist for all i,
j=i+2 " 26\ 2ty \Gj1
m-2 -1/, m & 1, .
¢ % 1 (1 1 1 ¢ MBn-t |y e
sup — &t z Anj EA ol ks Al — + $mo1
m o\ iz " f=rd) j  \9j j-1  \Fj-1 Pm-1
1
~/sx S
c om| A
+ = | < o (10)
oo oo 6;
Z<Z|C’1iff3) <o (a
i=0 \n=0
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Proof. The first part of the theorem can be proved in a similar way as above, so it is left to reader. Since
|T,|(8) = (1(8)) .s),; it follows from Lemma 1.4, A € (|T,|(6),|Ty|) if and only if A € (1(8),|Ty|) and

V™ e (1(8), c) where the matrices A and V(™ defined as in Theorem 2.6. Applying Lemma 1.1 to V™, we
get immediately the conditions (9) and (10). On the other hand, since |Ty|= (Dyw.;, A€ (1(8),|Tyl)
equals to AW = EM o T oA € (I1(8),1). Again, applying Lemma 1.1 to A(™, the condition (11) is obtained,
and so the proof is comleted.
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