

Dera Natung Government College Research Journal Volume 9 Issue 1, pp. 67-75, January-December 2024

Research Article

ISSN (Print): 2456-8228 ISSN (Online): 2583-5483

On almost GO-Menger spaces

Susmita Sarkar^a 🝺 , Prasenjit Bal^{b,*} 🝺

^{a,b}Department of Mathematics, ICFAI University Tripura, Kamalghat-799210, India.

Cite as: Sarkar, S., & Bal, P. (2024). On almost GO-Menger spaces, Dera Natung Government College Research Journal, 9, 67-75. https://doi.org/10.56405/dngcrj.2024.09.01.06 Received on: 17.07.2024, Revised on: 27.09.2024, Accepted on: 28.09.2024,

Available online: 30.12.2024.

*Corresponding Author: **Prasenjit Bal** (balprasenjit177@gmail.com) **Abstract:** By employing g-open sets, we present the concept of almost GO-Menger space in this article. After that, the nature of almost GO-Menger space is compared to GO-Menger space, and some fundamental topological aspects of such spaces are examined. Additionally, a study of this space's quasi-irresolute image and an investigation into possible connections with some selection principles are conducted.

Keywords: Selection Principles, Menger space, GO-Menger space, Almost GO-Menger space.

MSC Subject classification: 54C10, 54D35, 54A20.

1. Introduction

For most of the topologists of the world most fascinating covering attributes are compactness, Lindelöfness, and Mengerness. Karl Menger introduced the concept of Mengerness, a sequential covering feature, in 1924 (Menger, 1924). In literature, there are essentially two ways to generalise these covering features. Some generalisations are made using different selection principles (see (Bal & Bhowmik, 2017; Bal et al., 2018; Bal & Kočinac, 2020)), while others are made using different covering sets (see (Menger, 1924; Rajesh &Vijayabharati, 2014)). We apply both types of variations on the Mengerness property concurrently to bring about more intriguing extensions.

In the year 1970, Norman Levine presented the idea of generalised closed sets of a topological space (Levine, 1970). A subset A of a topological space (X, τ) is called g-closed if $A \subseteq G \in \tau$ implies that $\overline{A} \subseteq G$ (Levine, 1970). Dunham (1977) and Dunham et al. (1980) conducted in-depth research on the characteristics of g-closed sets. g-open sets were described in those studies as the complement of g-closed sets.

© 2024 by Authors.

https://dngcrj.dngc.ac.in/

This work is licensed under a Creative Commons Attribution 4.0 International License.

Without regard to g-closed sets, Bal et al. established another equivalent concept of g-open sets in (Sarkar et al., 2023). A subset A of a topological space X is called g-open set, if $V \subseteq int(A)$ whenever $V \subseteq A$ and for all closed set V(Sarkar et al., 2023). α -open sets (Njastad, 1965), b-open sets (Menger, 1924), θ -open sets (Veličko, 1966) and various generalisations of open sets are also being studied by many mathematicians. However, Dunham's (1977, 1980) findings make the g-opens sets the most intriguing extension of open sets. Using the g-open sets as a tool, Balachandran et al. (Balachandran, 1991) proposed the GO-compactness, Bal et al. (Sarkar et al., 2023) proposed GO-Lindelöfness, and GO-Mengerness and thoroughly investigated their features . In a similar manner, we used g-open sets to introduced almost GO-Mengerness and looked at some of its topological attributes in this study.

GO-Menger space is a study of sequential covering properties which can further be used in the study of selection principles and topological games.

2. Literature Review

For the readers' advantage, a few fundamental topics are discussed in this section.

For a topological space (X, τ) , a collection A of subsets of X is called a cover for the space X if $\bigcup U = X$. If the collection is a collection of open subsets of X then it is called an open cover (**Engelking**, 1989). Suppose, O denotes the family of all open covers of X. Then

Definition 2.1. (Kočinac, 2015) $S_{\{fin\}}(A, B)$ denotes the following selection principle : for each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of A there is a sequence $\{B_n : n \in \mathbb{N}\}$ of finite sets such that for each $n \in \mathbb{N}, B_n \subseteq A_n$ and $\bigcup_{n \in \mathbb{N}} B_n \in B$, where A and B are families of subsets of a space X or collection of families of subsets of a space X.

Definition 2.2. (Menger, 1924) A space X which satisfies the selection property $S_{fin}(O, O)$ is called an Menger space.

A subset A of a topological space (X, τ) is called g-closed if $A \subseteq G \in \tau$ implies that $\overline{A} \subseteq G$ (Levine, 1970). gCl(A) denotes the g-closer of a set $A \subseteq X$ and is defined as the smallest g-closed set containing A. Arbitrary union of g-closed sets is a g-open set. Levine (1970) studied g-open sets as the complement of g-closed sets. Sarkar et al. (2023) proposed an alternative equivalent definition of g-open sets. A subset A of a topological space X is called g-open set, if $V \subseteq int(A)$ whenever $V \subseteq A$ and for all closed set V (Sarkar et al., 2023). A set $A \subseteq X$ is called a g-regular subset if A is both g-open and g-closed. Throughout the paper R(X) will denote the collection of all g-regular subsets of X, GO(X) will denote the collection of all g-open subsets of X, GO(X) will denote the collection of all g-open covers of X.

Definition 2.3. (Sarkar et al., 2023) A space X which satisfies the selection property $S_{fin}(GO, GO)$ is called an GO-Menger space.

Example 2.4. (Sarkar et al., 2023) Let $X = \mathbb{N}$ equipped with the discrete topology τ_{δ} and $\{U_n : n \in \mathbb{N}\}$ be an arbitrary sequence of g-open covers of X. For each $n \in \mathbb{N}$, there exists a $U_n \in U_n$ such that $n \in \mathbb{N}$. So for each $n \in \mathbb{N}$, if we choose $V_n = \{U_n\}$. Then $V_n \subseteq U_n$ is a finite subset for each $n \in \mathbb{N}$. Also $\bigcup_{n \in \mathbb{N}} V_n$ froms a g-open cover of X. So the space is GO-Menger.

Definition 2.5. (Balachandran et al., 1991) $A map f : (X, \tau) \rightarrow (Y, \sigma)$ is called a) { *g-continuous*} if $f^{-1}(A) \in GO(X)$ for all $A \in \sigma$. b) {*gc-irresolute*} if $f^{-1}(A) \in GO(X)$ for all $A \in GO(Y)$.

No specific separation axiom is assumed for this paper unless otherwise stated and for the usual notions of topology we follow (Engelking, 1989).

3. Almost GO-Menger Spaces

Although GO-Menger space weaken's the concept of Menger property, we want to search for some other covering property which weaker than GO-Menger space but stronger than Menger space. With this aim we introduce the following definition.

Definition 3.1. Let GO(X) denotes the collection of all g-open covers of X. A topological space X is said to be almost GO-Menger space if for every sequence $\{U_n : n \in \mathbb{N}\}$, where $U_n \in GO(X)$ we can find a sequence $\{V_n : n \in \mathbb{N}\}$ such that $V_n \subseteq U_n$ is finite for all $n \in \mathbb{N}$ and $\bigcup_{\{n \in \mathbb{N}\}} \{ \bigcup \{ gCl(V) : V \in V_n \} \} = X$.

Definition 3.2. In a topological space X, $A \subseteq X$ will be called a g-dense subset if gCl(A) = X.

Proposition 3.3. If a topological space X contains a g-dense subset which is GO-Menger in X, then X is almost GO-Menger space.

Proof. Let *A* be a g-dense subset of *X* which is also GO-Menger in *X* and suppose { $U_n : n \in \mathbb{N}$ } is a sequence of covers of *A* such that $U_n \in GO(X)$ for each $n \in \mathbb{N}$. Since *A* is GO-Menger in *X*, there exists a sequence { $V_n : n \in \mathbb{N}$ } such that $V_n \subseteq U_n$ is finite and $A \subseteq \bigcup_{\{n \in \mathbb{N}\}} \{ \bigcup \{ V : V \in V_n \} \}$. But $A \subseteq \bigcup_{\{n \in \mathbb{N}\}} \{ \bigcup \{ V : V \in V_n \} \} \subseteq \bigcup_{\{n \in \mathbb{N}\}} \{ \bigcup \{ gCl(V) : V \in V_n \} \}$. Taking gCl we have, $X = gCl(A) \subseteq \bigcup_{\{n \in \mathbb{N}\}} \{ \bigcup \{ gCl(V) : V \in V_n \} \}$ [$\because A \text{ is } g - dense, \ gCl(A) = X$].Thus $\bigcup_{\{n \in \mathbb{N}\}} \{ \{ gCl(V) : V \in V_n \} \}$.

 $V \in V_n$ } = X. Hence the proposition.

Definition 3.4. Let GO(X) denotes the collection of a g-open sets of a space X. A space X is g-regular if for each g-closed set A and a point $x \notin A$ there exists $U, V \in GO(X)$ such that $x \in U, A \subseteq V$ and $U \cap V = \emptyset$.

Theorem 3.5. *The following statements are equivalent.*

(i) X is a g-regular space. (ii) For each $G \in GO(X)$ with $x \in G, \exists H \in GO(X)$ such that $x \in H \subseteq gCl(H) \subseteq G$. **Proof.** (i) \Rightarrow (ii) Let X is g-regular and $G \in GO(X)$ with $x \in G$. So, $X \setminus G = F(say)$ is a closed set with $x \notin F$. Therefore by g-regularity there exists $H, V \in GO(X)$ such that $x \in H, F \subseteq V and H \cap V = \emptyset$ $\Rightarrow H \cap F = \emptyset$ $\Rightarrow F \subseteq X \setminus H$ $\Rightarrow X \setminus G \subseteq X \setminus H$ $\Rightarrow H \subseteq G$ Moreover, $H \cap V = \emptyset$ $\Rightarrow H \subseteq X \setminus V \subseteq X \setminus F = X \setminus (X \setminus G) = G$ \Rightarrow $H \subseteq X \setminus V \subseteq G$ but, $X \setminus V$ is a g-closed set containing H \Rightarrow gCl(H) \subseteq gCl(X \ V) \Rightarrow gCl(H) \subseteq X \ V \subseteq G. Therefore, $x \in H \subseteq gCl(H) \subseteq G.$ (ii) \Rightarrow (i)

Let statement (ii) holds. Let $x \in X$ and F be any g-closed set such that $x \notin F$. Therefore $x \in X \setminus F = G$ (say) and G is a g-open set. Therefore by the given condition there exist $H \in GO(X)$ such that

 $x \in H \subseteq gCl(H) \subseteq G.$ $\Rightarrow x \in H \text{ and } X \setminus G \subseteq X \setminus gCl(H).$ $\Rightarrow x \in H \text{ and } X \setminus (X \setminus F) \subseteq V = X \setminus gCl(H) \text{ (say).}$ $\Rightarrow x \in H \text{ and } F \subseteq V \text{ where } H, V \in GO(X).$ Also, $H \subseteq gCl(H)$ $\Rightarrow H \cap (X \setminus gCl(H)) = \emptyset$ $\Rightarrow H \cap V = \emptyset$ Therefore X is a g-regular space.

Theorem 3.6. A GO-Menger space is always an almost GO-Menger space.

Proof. The proof follows directly from the definition and the fact that $gCl(V) \supseteq V$ for all $V \subseteq X$.

Example 3.7. There exists a topological space which is neither GO-Menger nor almost GO-Menger.

Let $X = [0, \infty)$ and $B = \{B_n = [0, n): n \in \mathbb{N}\} \cup \{\emptyset\}$ is a base for the topology τ on X. Now we want to show that in the space X, $A \subseteq X$ which does not have the supremum element in X is g-closed and if A has a supremum in X, then A is not g-closed. Since X is bounded below, every element of X will have a infimum in X.

Suppose A has a supremum a_{sup} in X then $A \subseteq [0, a_{sup} + 1) \in \tau$. But $\overline{A} = [a_{inf}, \infty) \subseteq [0, a_{sup} + 1)$, $(a_{inf}$ is the infimum of A.)

Therefore *A* is not a g-closed set.

Now, suppose that A do not have supremum in X then X is the only open set containing A and $\overline{A} \subseteq X$. i.e. A is g-closed.

In the same space X, every single ton $\{a\}$ is a g-open set. Because $X \setminus \{a\}$ does not have any supremum.

Consider the cover $U = \{ \{x\} : x \in X \}$ and the sequence $\{ U_n = U : n \in \mathbb{N} \}$ of g-open covers of X. Now if we consider any finite subset $V_n of U_n$ for each $n \in \mathbb{N}$ then $\bigcup_{\{n \in \mathbb{N}\}} V_n$ will not be a cover of X Since countable union of finite union of singletons is countable.

Therefore X is not GO-Menger.

Now, for the same sequence $\{ U_n : n \in \mathbb{N} \}$ of open covers suppose we choose the sequence $\{ V_n : n \in \mathbb{N} \}$ such that $V_n \subseteq U_n$ is finite for each $n \in \mathbb{N}$.

 $V_{V_n} \in V_n$ is singleton set for each $n \in \mathbb{N}$. Since $V_{V_n} \cup [1, \infty)$ is a g-closed set containing V_{V_n} , $\therefore gCl(V_{V_n}) \subseteq V_{V_n} \cup [1, \infty)$ for each $n \in \mathbb{N}$.

$$\Rightarrow \bigcup_{\{V \in V_n\}} gCl(V_{V_n}) \subseteq \left(\bigcup_{\{V_{V_n} \in V_n\}} V_{V_n}\right) \cup [1,\infty) \text{ for each } n \in \mathbb{N}.$$
$$\Rightarrow \bigcup_{\{n \in \mathbb{N}\}} \left\{\bigcup_{\{V \in V_n\}} gCl(V_{V_n})\right\} = \left\{\bigcup_{\{n \in \mathbb{N}\}} \left(\bigcup_{\{V_{V_n} \in V_n\}} V_{V_n}\right)\right\} \cup [1,\infty) \neq X$$

Because $\bigcup_{\{n \in \mathbb{N}\}} (\bigcup_{\{V_{V_n} \in V_n\}} V_{V_n})$ is a countable union of finite union of singletons which is a countable set and it cannot cover the uncountable set [0,1).

Open Problem 3.8. Does there exists an almost GO-Menger space which is not a GO-Menger space?

Theorem 3.9. A g-regular almost-g-Menger space is a g-Menger space.

Proof. Let $\{U_n : n \in \mathbb{N}\}$ be a sequence such that $U_n \in GO(X)$ for each $n \in \mathbb{N}$ in a topological space (X, τ) . By theorem (Andrijevic, 1996), for each $n \in \mathbb{N}$, $\forall U \in U_n$ such that $a \in U$ there exists a $V_a \in GO(X)$ such that $a \in V_a \subseteq gCl(V_a) \subseteq U$.

Suppose $M_U = \{ V_a : a \in U \}$ for each $U \in U_n$ and $n \in \mathbb{N}$ and assume that $V_n = \bigcup_{\{U \in U_n\}} M_U$ for each $n \in \mathbb{N}$.

$$\implies \mathbf{V}_n = \bigcup_{\{U \in \mathbf{U}_n\}} \{ V_a : a \in U \} \text{ for each } n \in \mathbb{N} \}.$$

Thus $V_n \in GO(X)$ for each $n \in \mathbb{N}$. Moreover $V'_n = \{ gCl(V) : V \in V_n \}$ is a refinement of U_n for each $n \in \mathbb{N}$.

But $\{V_n : n \in \mathbb{N}\}$ is a sequence such that $V_n \in GO(X)$ for each $n \in \mathbb{N}$ and (X, τ) is almost GO-Menger. Therefore there exists a sequence $\{W_n : n \in \mathbb{N}\}$ such that $W_n \subseteq V_n$ is finite for all $n \in \mathbb{N}$ and $\bigcup_{\{n \in \mathbb{N}\}} \{\bigcup \{gCl(W) : W \in W_n\}\} = X$.

Now for each $n \in \mathbb{N}$ and $W \in W_n$ we can choose $U_W \in U_n$ such that $W \subseteq gCl(W) \subseteq U_W$. Let $U'_n = \{U_W : W \in W_n\}$. So, $\{U'_n : n \in \mathbb{N}\}$ is a sequence such that $U'_n \subseteq U_n$ is finite for each $n \in \mathbb{N}$.

We have to show that $\cup_{\{n \in \mathbb{N}\}} \{ \cup U'_n \} = X$.

Let $x \in X$ be arbitrary. Since $\bigcup_{\{n \in \mathbb{N}\}} \{ \bigcup \{ gCl(W) : W \in W_n \} \} = X$, there exists a $m \in \mathbb{N}$ and $W \in W_M$ such that $x \in gCl((W)$. By the construction, there exists $U_W \in U'_M$ such that $x \in gCl(W) \subseteq U_W$. Therefore $\bigcup_{\{n \in \mathbb{N}\}} \{ \bigcup U'_n \} = X$. Hence X is a GO-Menger space.

Definition 3.10. A map $f : (X, \tau) \to (Y, \sigma)$ is called quasi-irresolute if $f^{-1}(A) \in \mathbf{R}(X)$ for all $A \in \mathbf{R}(Y)$.

Theorem 3.11. Let (X, τ) be an almost GO-Menger space and (Y, σ) a topological space. If $f : X \to Y$ is a quasi-irresolute surjection, then (Y, σ) is an almost GO-Menger space.

Proof. Let $\{U_n : n \in \mathbb{N}\}$ be a sequence of covers of Y by g-regular sets. Let $U'_n = \{f^{-1}(U) : U \subseteq U_n\}$ for each $n \in \mathbb{N}$ is a sequence of g-regular covers of X. Since 'f' is a quasi-irresolute surjection and X is an almost GO-Menger space then there exists a sequence $\{V_n : n \in \mathbb{N}\}$ such that for every $n \in \mathbb{N}$, V_n is a finite subset of U'_n and $\bigcup_{\{n \in \mathbb{N}\}} V_n$ is a cover of X, $\bigcup_{\{n \in \mathbb{N}\}} \{\bigcup \{gCl_X(V) = V : V \in V_n\}\} = X$.

For each $n \in \mathbb{N}$, $V \in V_n$ we can choose a $U_V \in U_n$ such that, $V = f^{-1}(U_V)$. Now construct a sequence $W_n = \{ gCl_Y(U_V) = U_V : V \in V_n \}$ by g-regular sets of U_n .

Now, if $y = f(x) \in Y$ then there exists a $V \in V_n$, for each $n \in \mathbb{N}$ such that $x \in V$. Since $V = f^{-1}(U_V)$. Therefore $x \in f^{-1}(U_V)$.

 $\Rightarrow y = f(x) \in U_V \in W_n.$

Therefore $\bigcup_{n \in \mathbb{N}} W_n$ is a cover of *Y*.

Hence (Y, σ) is almost GO-Menger space.

Definition 3.12. A g-open cover U is a gw-cover of a space X if X does not belong to U and every finite subset of X is contained in a member of U.

Let $G\Omega$ denoted be the collection of all $g\omega$ -covers for a space *X*.

Theorem 3.13. For a space X the following are equivalent:

(i) X is GO-Menger.

(ii) X satisfies $S_{fin}(\mathbf{G}\Omega, \mathbf{G}O)$.

Proof. (i) \Rightarrow (ii)

Every $g\omega$ -cover of X is a g-open cover for X, which implies that every GO-Menger space satisfies the selection principle S_{fin} ($G\Omega$, GO).

(ii)
$$\Rightarrow$$
 (i)

Let $\{U_n : n \in \mathbb{N}\}$ be a sequence of g-open covers of X. Partition \mathbb{N} into pairwise disjoint infinite subsets $\{N_i : \mathbb{N} = N_1 \cup N_2 \cup \ldots \cup N_m \cup \ldots\}$.

For each $n \in \mathbb{N}$, V_n be the set of all elements of the form $U_{n_1} \cup U_{n_2} \cup ... \cup U_{n_k}$, $n_1 \leq n_2 \leq ... \leq n_k$, $n_i \in N_n$, $U_{n_i} \in U_n$, $i \leq k$, $k \in \mathbb{N}$ which are not equal to X. Then every V_n is a g ω -cover of X. Now X satisfies S_{fin} ($G\Omega$, GO) so there exist a sequence { $W_n : n \in \mathbb{N}$ } such that $W_n \subseteq V_n$ is finite and $\bigcup_{\{n \in \mathbb{N}\}}$ { $\bigcup_{\{W \in W_n\}} W$ } = X.

Suppose $W_n = \{ W_n^1, W_n^2, \dots, W_n^m \}$ where each $W_n^i = U_n^{1^{i^n}} \cup U_n^{2^{i^n}} \cup \dots \cup U_n^{k^{i^n}}$. So in this way we get finite subsets of U_p for some $p \in \mathbb{N}$ which cover X. If there are no elements from some U_p chosen in this way, then we put $W_p = \emptyset$.

This gives that *X* is GO-Menger.

4. Conclusion

Almost GO-Menger space is a weaker version of GO-Menger space which is preserved under quasiirresolute maps. A g-regular almost GO-Menger space is equivalent to GO-Menger space. A space containing a g-dense, GO-Menger subset is always almost GO-Menger space. GO-Menger space can also be characterise in terms of selection of principles .

Acknowledgment: The authors thank the reviewers for carefully reading the article and suggesting necessary changes that has improved the presentation of the article.

Availability of Data and Materials: Not applicable.

Conflicts of Interest: Authors declare no conflicts of interest.

Funding: Not applicable.

Authors' Contributions: All the authors contributed equally to the article. All the authors read and approved the final version.

References:

Andrijevic, D. (1996). On b-open Sets, Matematički Vesnik, 48, 59-64.

Bal, P., & Bhowmik, S. (2017). On R-star Lindelöf Spaces, Palestine Journal of Mathematics, 6 (11), 1-7.

- Bal, P., Bhowmik, S., & Gauld, D. (2018). On Selectively Star Lindelöf Properties, Journal of the Indian Mathematical Society, 85 (3-4), 291-304.
- Bal, P., & Kočinac, Lj.D.R. (2020). On selectively Star-ccc Spaces, Topology and its Applications, 281, 107184.
- Balachandran, K., Sundaram, P., & Maki, H. (1991). On Generalized Continuous Maps in Topological Spaces, Memoirs of the Faculty of Science, Kochi University. Series A, Mathematics, 12, 5-13.

Dunham, W. (1977). $T_{\frac{1}{2}}$ -spaces, Kyungpook Mathematical Journal, 17, 161-169.

Dunham, W., & Levine, N. (1980). Further Results on Generalized Closed sets in Topology, Kyungpook Mathematical Journal, 20, 169-175.

- Engelking, R. (1989). General Topology, Sigma Series in Pure Mathematics, Revised and complete ed., Heldermann, Berlin.
- Kočinac, D.R. (2015). Star Selection Principles: A Survey, Khayyam Journal of Mathematics, 1, 82-106.
- Levine, N. (1970). Generalized Closed Sets in Topology, Rendiconti del Circolo Matematico di Palermo Series 2, 19 (2), 89-96.
- Menger, K. (1924). Einige Überdeckungssä tze der punktmengenlehre, Sitzungsberichte der Wiener Akademie, 133, 421-444.
- Njastad, O. (1965). On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics, 15, 961-970.
- Rajesh, N., & Vijayabharati, V. (2014). Properties of b-compact spaces and b-closed Spaces, Boletim da Sociedade Paranaense de Matemática, 32 (2), 237-247.
- Sabha, A., Khan, M.D., Kočinac, Lj.D.R. (2016). Covering properties defined by semi-open sets, Journal of Nonlinear Science and Applications, 6, 4388-4398.
- Sarkar, S., Bal, P., & Rakshit, D. (2023). On the topological covering properties by means of generalized open sets, Topological Algebra and its Application, 11, 20230109.
- Veličko, N.V. (1966). H-closed Topological Spaces, Matematicheskii Sbornik, 70, 98-112; English transl. in American Mathematical Society Translations, 78 (1968), 102-118.