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1. Introduction

The Volterra-Fredholm integral equations comes from problems of parabolic boundary value, mathematical
modeling based on the spatio-temporal development of an epidemic, from a variety of physical and biological
models. Applications of Volterra-Fredholm integral equations typically occur in fields related to physics, fluid
dynamics, electrodynamics and biology. Detailed of Mixed Volterra Fredholm integral equation will be found
in (Wazwaz, 2011). Numerous publications have recently been published that focus on understanding these
equations and their properties. Many researchers have shown immense interests on this issue and many
generalizations of the same have been given by a lot of researchers.Some researchers investigated of mixed
integrral equation by taking properties of kernal. Some of these research papers which will help us in this
discussion are (Albugami et al., 2024; Alharbi, 2024; Mahdy et al. 2024; Noeiaghdam, 2021). Lately, a few

researchers started investigating that how time function affect the solution of integral equation (Abusalim, 2023;
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Al Hazmi, 2023; Al Hazmi et al., 2023; Jan, 2002a; Jan, 2002b; Mahdy et al., 2024; Mahdy et al., 2023; Matoog et
al., 2023).

In this paper, we consider QMIE with singular kernel in 2 + 1 dimension. Here, the position kernel can

take form as Hilbert kernel, Carleman kernel form, Cauchy kernel form or logarithm form.
Consider in the space L, ([0, a] X [0,b]) X C[0,T], (T < 1) the (2 + 1) dimensional with singular kernel

& (s Uy )P (U, Uy £) =F (Uy, Uy t)

t ra b
+F(ux,uy)f0 fo fo g, Dx(w) — w))@ vy, vy; T)dvidv,dr, M

where u = (uy, u,) and v = (v, vy) are 2 dimensional spatial variables. In equation (1) F (uy, u,;t) is a
known continuous function that explain the type of QMIE indicated by the symbol §(uy, u,).I'(uy, uy) is a
function which has various physical interpretations in the field of genetic engineering and many other. g(t, ) is
a time kernel and x(w(u) — w(v)) is a position kernel. Here we take the singular position kernel. And the

function @ (uy, u,; t) is unknown function.

2. Existence of unique solution

For verifying existence and uniqueness of the equation (1), we will use Banach fixed point theorem. If we

represent our equation (1) into an integral operator, then we get

T(ux,uy;t) F(ux,uy)
S(uruy)  §(uy,uy)

Sp(U Ui t) = SQ (s, ty; 1), (§(Ux, Uy) # 0,T(uy, uy) # 0), (2)

t ra b
S(p(ux,uy;t)zfo fo fo g, Dk(ww) — w@))@ vy, vy; T)dvidv,dr. 3)

Now, assume the following conditions:

(1). The position kernel k(w(u) — w(v)) fulfilled the condition of discontinuity

<f0a fob foa fob|K(w(u) - w(v))|2duxduydvxdvy>1/2 e

(ii). The time kernel fulfill |g(¢t,7)| < M,Vt € [0,T],t < 1, where g(t,7) € C([0,T] X [0,T]); while

|§(ux'uy)| < W} |F(ux;uy)| < F
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(iii). The norm of function F (u,, u,; t) is in the space L, ([0, a] X [0,b]) X C[0,T], (T < 1) and fulfills

t a rb 2 1/2
1F ety O, g0 aptometon) = osr&%’ilfo (fo fo (F (i) d“xd”y> de=.

(iv). The unknown function ¢ (uy, uy; t), the norm is ||<p(ux, Uy; t)|| = Q.

In the conditions (i)-(iv), €, M, w, T, G and Q are positive constants.

Theorem 2.1. By the above assumptions, the QMIE (1.1) has a unique solution if
TMCT < w.

To show the existence and uniqueness of the solution of equation (1) we must determine the following two

lemmas:

Lemma 2.2. Under the assumptions (i)-(iv), the operator S, is a itself map on the space L,([0,a] x [0,b]) X
C[0,T],T < 1.

Proof. Using the assumptions (i) and (iii), we have

F (uy, Uy; t) T(u,, uy)

150 Gty 011 = | E(e uy)  E(Uy tty) S (uy, uy; t)]|
<95
1§ (ux, uy)|
t ra b
+%l|fo fo fo gt Dr(wW) — w()@(vy, vy; T)dvydvydr||
T a b ra b
S%‘F%M[” -fo .[0 fo fo IK((A)(U) —a)(v))|2duxduydvxdvy||]1/2 (4)

t a b
X |l maxosier f {f f (@20, DY dvydv, }/2de
0 0 0

IA

+

Sl Rl

MCT || (ux, uy; O]

r
+0o ||<p(ux,uy;t)||,(0 = %MCT)

IA

S{IESISES)

The inequality (4) shows that, the operator S maps the ball into itself
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5
[w — TMCT]

Q:

Since o > 0,G > 0, therefore we get 0 < 1. Then, we have

1S (ux, uy; O = (IS (W, uy; ] < o]y, uy; O]
Lemma 2.3. If we consider the assumptions (i), (i) and (iv) then the integral operator S is continuous in the
space L,([0,a] x [0,b]) x C[O,T].
Proof. Consider two functions @1 (y, Uy; t) and @, (uy, u,; t) in the space L, ([0, a] X [0, b]) X C[0, T], then
we have

”g(pl(ux' Uy; t) - §¢2 (ux' Uy; t) ”

s:gg—z;: I f t f ) f 196D ) = 0@Ior (e s T) — P g3 Dy dl]

Taking the assumptions (ii) and (iv), we have
I |§(P1 (uxr Uy, t) - §‘P2(ux' Uy, t) | |
F t ra b
<Ml [ [ [ @) = 0@)l10r vy 1) = 0200 vy Dlduednydell,
o Jo Jo
Applying Holder’s inequality to the integral term, and then using (i), we finally obtain

||§(pl(uxfuy; t) _§§02(uxruy;t)|| < O-”(pl(vw vy; T) - ‘Pz(vx' vy;T)“'

With this inequality, we can see that the operator S is continuous in L, ([0, a] X [0, b]) x C[0,T] and then S is a

contraction operator under o < 1. Thus, by Banach’s fixed point theorem, the map S itself is a unique solution

of the equation (2).

3. The convergence of solution
In order to clarify why the solution is converged to @(uy,u,,y) we construct the family of solution

sequence as

(p(ux' uy; t) = {‘Po(ux; uy; t)' (pl(ux' uy; t)' R (pn—l(ux' uy; t)' Pn (ux' uy; t)r v }
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which simply can denote as @ (uy, uy; t) = {@y (Uy, Uy; t) }5=o. Then, we pick two different functions
Pn—1(Uy, Uy; t), Pr(Uy, Uy; t), to construct the sequence of integral equations as below:

f(uxruy)(pn(ux'uy; t) =F (uy, Uy; t)
t a b
+F(ux,uy)f f f g, Drk(ww) —w)@,_1(vy, vy;r)dvxdvydr

and

§ (uy, uy)(pn—l(uxf Uy; t) =F (uy, Uy; t)
t ra b
+F(ux,uy)f f f gt k(W) — w(V))Pn-2(Vy, vy; T)dvidvydT.
o Jo Jo

Considering the above mentioned integral we deduce that

t ra rb
f(ux,uy)q’n(ux,uy;t)=F(ux,uy)f f f gt Dk(ww) — w))¥h_1(vy, vy; T)dVdvydr,

where

F(u,, Uy; t)

Wy, (uy, Uy; t) = @n(Uy, Uy; t) — (pn—l(ux'uy; t); o (uy, Uy; t) = ) f(uxruy # 0). 5)
§(ux, uy)

Next we deduce easily

On (U, Uy t) = Xty Wi(uy, uy;t);n=1,2,3,... (6)
Using (5) we have
ITue, w )| (* (@ (P
19t O < 2 [ [ [ g6 D@ ) = 0¥y (v vy D v,y e

If(ux'uy)l 0 Yo 0

f a b ra rb 1/2

< :M( f f f f |k(w(u) — a)(v))|2duxduydvxdvy )
w o Jo Jo Jo

t a b 1/2
X || maxoster j (f f {<p(vx,vy;r)}2dvxdvy> dr
0 0 0
T
%

S MCT”\Pn_]_(ux'uy; t)“

Using the condition (i) and (ii) and mathematical induction method, we obtain

|| (ux, Uy; O], (0,a1x[00)xcior] S 0 [Wno1 (U, Uy; O[5

McT .
o=— We can say that this bound makes the sequence W, (u,,u,;t) converge, and hence the sequence

{@n(uy, uy; t)} converges. Hence the infinite series
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P(Uy, uy; t) = z Wi (uy, uy; t),
i=0

t € [0,T] is uniformly convergent since the terms W; (uy, u,; t) are dominated by o™.

4. The System of Fredholm integral equation

Using quadrature method (Atkinson, 1997), the solution of equation (1) is converted to system of
Fredholm integral equations. Here we devide the time [0,T], 0 <t <T=1as 0=¢t; <t; <...< ¢ <...<

ty =T,wheret =t;,l =0,1,...,N, such that the equation (1) will take the form as:

f(uxruy)(p(ux' Uy; t) :T(ux'uy; t)

t; a b (7)
+F(ux,uy)f f f g, Dr(ww) — w())@ vy, vy; T)dvedv, dt.
o Jo Jo
The term of the Volterra integral as follows:
t; ra b
f f f g, Dr(wu) — w())@ vy, vy; T)dvedv,dt
o Jo Jo
l C))

a rb
= z ajg(tl,tj)f f k(w() — w(@))P vy, vy)dv,dv, + O(hfﬂ),

j=0

where hy—0 as p > 0. Define h; = t;,; — tj and h = maxg<j< h;.

The value of p and u;; depend upon the number of derivatives g(t, T) with respect to time t. Now neglecting

O(hfﬂ) and using value of (8) in (7) we have

f(ux'uy)(p(uxr uy; tl) :T(uxﬂ uy; tl)

L a rb
+T'(uy, uy) z a;g(t, tj)f f k(w(u) — o)) (v, vy)dvdu,,. ®
= o Jo

Using the notations as @ (uy, Uy; t;) = @;(Uy, Uy), F(Uy, Uy; t) = Fi(uy, uy), gt tj) = gu)-

Then rewriting the equation we have the following form

L a rb
£ by )1t ) = Fultr ) + Tt) Y gy [ | (000) = 000Dy )y, (10)
= o Jo

81



R. Devi Discussion of (2 + 1) dimensional mixed integral equation with singular kernel

5. Chebyshev Polynomials

In this part, we use the Chebysev polynomial technique (Abdel-Aty, 2022) to find the solution of the
integral system (10). Here, we use the extended version of Chebyshev polynomials in 2 + 1 dimensional system
to solve the algebraic integral system (10), which give rise to consider replacing the given k(w(u) — w(v))

equivalently with a kernel «,, (w(u) — w(v)) that should fulfill the condition

a b ra /b 1/2
<f f f f lk(w(w) —w®)) — ky(w(u) — a)(v))|2duxduydvxdvy> —0; n—ooo, (11)

Then, (10) can be expressed in the following mentioned form of an algebraic system

E(ux' uy)go?(uxl uy)
L a rb
= j-"l(ux,uy) + F(ux,uy) z a;g; f f rcn(w(u) - w(v)) (p]’-l(vx, vy)dvxdvy +R,. (12)
. o Jo
Jj=0
As a result, the estimated error can be estimated using the following equation:
Ry = I(pl(ux'uy) - (p?(ux' uy)|_>0; n—oo. (13)
By writing the kernel of (12) in the following form for using the spectral relationships:
q n
2u, 2u,, 2v, 2v,,
k(@) = 0@ ) = Y Y TEE - DL - DL - D2 -1, (14)
r=0 k=0

where T; (%u — 1) is considered as the Chebyshev polynomial of the first kind and degree i. Now using (14) in
(12), we have

l q n
2
& (s Uy ) @7 (U, Uy) = Fr(Uy, uy) +T(uy, u )z z z a;9.,;Tr ( 1)Tk(% -1)
]=0 r=0 k=0 (15)

a rb 20
f f T (Tx — DTy (Ty — D@} (vy, vy))dvedv, + R,
0 0

The algebraic integral system (15) may be solved numerically. If we put the [ = 0 in the system (15), then we
get the value of g (u) as
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w o _Foltuty) | TCuw) oy 2
OB e 0y) = 5+ S,(ux,uj)zz aogoaTy Co — T (52— 1)

(16)
a rb
f f TT(—" — 1)Tk(—y — 1)pf (U, v,)dV,dvy, + R,
o Jo a b
Now, in the original form, i.e., the equation (15). Here we consider the unknown function ¢7* (uy, u,,) as
ol
Or (U, uy) = A(ux)A(uy)B(uy)B(uy); A(u ) 2 (17)
Here A(u) is the weight function of T;(u), and B(u) is unknown function. Consequently, we have
- (2 - D2 - 1)

Ol ty) = ) . (18)

= oo 1oy

Here T;(u) are the first kind of Chebyshev polynomials, and €);; are constants. Again the function F; (u,, u,)

can be approximated as

: T2 - DT, - 1)

Fip(it ) = ) Ry (19)

=0 '\/1—(%—1)2\/1—(2%—1)2

where the coefficients ; ;; i = 0 representing

T, - Dr,E2 - 1)

( 4 a b
> f f Ty u,) — du,duy, i# 0

1- (B

Zuy

2Uy

»  TeE-nnéE-n
e 1)2\/1—(2” 1y?

By usage of equations (18) and (19) in equation (15), we have

i=0.
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& (Uy, uy) Z ., T; (Zux 1)%(%: N
i=0 \/1—( 1)2\/1_(uy 12

T - Dr,E2 - 1)
:::E: 8111

=0 J1 (2= 1)2\/1—(2%—1)2
)Y i S o -, 1)

]=0 r=0 k=0

a Uy 2v,, n
fo fo Tr(T — 1)TR(T — 1)<pj (vx,vy)dvxdvy +R,,

p

which fulfill the orthogonal relation as mentioned below
22Uy, 2u 2Uy 2u
f fb T (=2 = DT, (G~ DTG - DT,(GE -1
J1 - (B=— 1)2\/1— (22— 12

( 0,ifnefporm=#gq
2
Z,ifnzpiOandmzq;tO
=4 2

7,ifn=0andm=q¢00rm=0andn=p¢0

du,du,

\ rwlifn=m=p=q=0.

6. Convergence analysis
Here, in this part we will proof that the unique numerical solution of the system is exist under some

predefined assumptions. The theorems and lemmas that mentioned below will help to achieve this aim.

6.1. The Existence and Unique Numerical Solution

Lemma 6.1. The kernel k,(w(u) — w(v)) with (15) condition also satisfies the following condition:

(La fob foa fob | (w(u) — w(v))|2duxduydvxdvy>1/2 e

Vn >ngy,ng € N, Cis a constant.

Proof. We use the given cited formula which will lead to proof the lemma

foa fob foa fob lien (w(u) — w(V))|*duydu,dv,dv,

a b ra pb
= f f f f lkn (0(@W) — w(@)) — k(w@w) — w®)) + k(ww) — w®))|?du,du,dv,dv,.
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Then, we get

<an fob foa fob e () = “’(U))Izduxduydvxdvy>1/2

a rb a b . 1/2
= <f f f f (@) = w(®) = Kkp (@) — w@))| + |k(wW) — w(®@))]) duxduydvxdvy>

and applying condition (11), we get

Va > 0, there exists ny € N

a rb ra rb 1/2
([ [ i - o) - s - oo)Paududsas,) <

vn > n,.
Using Minkowski's inequality and assumption (i), we obtain

Va > 0, there exists ny € N

(La fob foa fob |1en (w () = w(v))IZduxdudexdvy>1/2 e

vn > ng,ng €N.

Theorem 6.2. Consider the Lemma 6.1 and the assumptions of the Theorem 2.1 are satisfied; then the

sequence of operators S,, defined

T(ux,uy;t) F(ux,uy)
§(uxuy) $(uxuy)

E‘p(ux' Uy; t) = S (Uy, Uy; t), (§ (uy, uy) # 0, (uy, uy) # 0),

where

S ty; ) = [1 37 ) 9(t Den (W (W) = w(@))@(v, vy; T)dvydvy . (21)

Then, there exists a unique solution if

TMCT < w.

To show the existence of unique solution of (21), we have to consider two lemmas, which are as follows

Lemma 6.3. Under the assumptions (1)-(iv) of the Theorem 2.1, and in the space L,([0,a] X [0,b]) X

C[0,T),T < 1, the sequence of operators S, maps the space into itself.
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Proof. Using the assumptions we taken (i) and (iii) and equation (11) and (21), we have
T(ux,uy; t) F(ux,uy)
S(up,uy)  $(uy Uy)

15260 (U, tys ]| = Sp(Uy, Uy t)

_ 5
T w(uy, uy)|

T (e, uy)| g(t Dy (W) — w())P(vy, vy; T)dv,dvyde

€t ) " :
<£+£M( |K (W) — w))|*duydu, dv,dv )1/2
=% W n XEEYyEEXTTY

xmax0<t<Tf (f f {0V, vy ;7)Y dv,dv )1/2 dt

T
+ = MCT [0 (s D

§|I© §|I©

r
+o ||<p(ux,uy, t)|| (o= —MCT)

The inequality (2.3), the operator S,, maps the ball into itself

bo_ &
[w — TMCT]
Since o0 > 0,G > 0, therefore we have ¢ < 1. Then, we have

IS0 (s s )] = ISl [l (e wys )| < llop (e 1y )]

Lemma 6.4. If assumptions (i), (ii) and (iv) are met, then the integral operator S,, is continuous in the space

L,([0,a] x [0,b]) x C[O,T].

Proof. Consider two functions @1 (iy, Uy; t) and @, (uy, u,; t) in the space L, ([0, a] X [0, b]) X C[0, T], then

we have
|1Sn 01 (U, Uy; £) — Sppa(Uy, uy; )|
<Ig&tzy)l f f f 196Dl en (@) = (D)2 (v, 3 7) = @ (v, vy )| dvedvy dr

Taking note of assumptions (ii) and (iv), we have
| |§(P1 (uxr Uy; t) - 5902 (ux' Uy; t) I I

f f f e (@(10) — W) 91 (U, V3 T) — 9 (U, vy D) vy dr
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Applying Holder inequality to the integral term, and then using (i), we finally obtain

”En(pl(ux' Uy, t) — §n<p2 (uxruy; t)” < G||(p1(vx' Vy; T) - <P2(vx' Vy; T)”

vn > n,. With this inequality, we can see that the operator S,, is continuous in L, ([0, a] X [0, b]) X €[0,T] and

then S,, is a contraction operator under ¢ < 1.

6.2. Error Analysis of Numerical Solution

Consider the approximate solution to satisfy the integral equation

l
a rb
E(uxJ uy)(p{l(uxJ uy) = :Fl(uw uy) + F(ux'uy) z ajgl,j f f Kn(w(u) - w(v))(p]r'l(vx' vy)dvxdvy'
= o Jo

Then, the error is R, = [ (U, Uy) — @7 (U, Uy)].

Let us assume the following assumptions in order to discuss the error

(a)  The kernel of position satisfies the discontinuity condition

@ a 1/2
(f fbf fb|"(“)(u) —w®)) — Kkp(w(w) — w(v))|2duxduydvxdvy>

= <f0a fob foa fob|lcn+1(w(u) - a)(v))|2duxduydvxdvy>1/2 <C"

(b)  The time kernel fulfils ¥7_,a’gf; < M,

(c)  The unknown function @ (uy, u,; t), satisfies the condition:

a rb a rb
mlaxf f |<pl(vx,vy) — @' (Vy, vy)|dvxdvy = mlaxf f |<p{‘+1(vx, vy)|dvxdvy =Q".
o Jo o Jo

Theorem 6.5. With the above mentioned assumptions (a)-(c) the error of the equation (1) is stable with the

condition

I
[ Rnll = ?M*(C + Q"

Proof. We have the error
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Rn = [(pl(ux'uy) - (p?(ux' uy)]
l
[(uy uy) @ P n
=N g, || K@) = 0@)0; @ ,) = Kn(@W) = @)} (v, v,)]dv,dv,
E(ux' uy) =0 0 0
l
_ Pue uy)

" S £y
(@) =~ 0P} (v vy) ~ Kn(©W) ~ @)} (v, 1) vz,

a b
49, f f k(0 @) — 0V, (Ve 1) — k(@) — ©@))PT Ve 1)

Using the properties of the norms we have

l
r o a b
ENE M[||Z B9 || @) 00D @00 1,) — 0] 0,1,y |

1§ (s 1y

+||Z o[ [ 1@ - 00 - 10060 ~ @I} iy I

; ZI: {”f f f f Ik (w(u) — w)|*duydu,dv,dv,||]*/?
X IImaxlf f |91(Vx, vy) — @1 (U, vy) [ d vy dvy ||}

+{||f0 fo fo fo K1 (W) — w())|>du, du, dv,dv, ]/

X mazx, f f O+ (v, 1) dved, ]
0

IA

=l =1 =l
R R

[(CQ* +CQM)]

IA

(C+CHO".

7. Conclusion

In our present work, QMIE is discussed with singular kernel in a dimension, where we discussed both

position and time. We used the quadratic method which convert the QMIE of time and position to a system of

Fredholm integral equation such a way that it will be easier to discuss numerical method for this type of

equation. In our future work we can study this kind of equation by taking different kernel in same dimension.

Another future work of our article that we can discuss by taking singular kernel in integro differential equation.
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