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Abstract: This paper investigates statistical convergence and completeness within the framework 

of octonion-valued metric spaces (OVMSs). By equipping the algebra of octonions with a suitable 

partial order, we extend classical notions of convergence, Cauchy sequences, and statistical density 

to the non-associative setting of octonions. Several fundamental properties are established, 

highlighting the interaction between statistical convergence and completeness in OVMSs. Our 

findings show that statistical convergence implies statistical Cauchy behaviour in these spaces, and 

conditions under which statistical completeness is achieved are clarified. The study not only 

generalizes conventional metric spaces but also reveals the structural impact of octonions' non-

associativity on convergence theory. Potential implications for both pure mathematics and applied 

areas such as physics, control theory, and artificial intelligence are discussed. 
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1. Introduction 

Following Hamilton's seminal 1843 discovery of quaternions, Graves formulated octonions, an extension of 

higher-dimensional number systems. Later, Arthur Cayley independently refined and advanced the concept. 

This progression, from real numbers through complex numbers and quaternions to octonions, constitutes a 

structured growth of hypercomplex number systems, governed by the Cayley-Dickson process. The method 

gradually expands the dimension, beginning with real numbers in one dimension, advancing to complex 

numbers in two dimensions, then to quaternions in four dimensions, and finally to octonions in eight 

dimensions. Each step in this sequence reveals increasingly intricate algebraic structures and properties, paving 

the way for novel mathematical insights and applications.  
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Octonions stand out in this progression due to their distinctive mathematical characteristics. Real and 

complex numbers satisfy commutativity, while quaternions break this property but remain associative. 

Octonions, however, deviate significantly from this pattern, exhibiting neither commutativity nor associativity. 

Their non-associative nature implies that the order of grouping terms affects the result of multiplication, as seen 

in (𝑎𝑏)𝑐 ≠ 𝑎(𝑏𝑐). This deviation, while precluding them from fitting into standard algebraic frameworks, 

places them within the broader category of alternative algebras. These algebras adhere to weaker forms of 

associativity, encapsulated by the Moufang identities. 

The Cayley-Dickson construction, through which octonions are derived from quaternions, is fundamental to 

defining their unique multiplication rules. These rules are often illustrated using the Fano plane, a diagram that 

visually encodes the relationships between the basis elements of the octonion space. This representation is a 

valuable tool in mathematical applications, providing a clear depiction of how the basis elements interact during 

multiplication and highlighting the intricate structure and properties of octonions. 

While long considered of primarily theoretical significance, the inherently non-associative algebraic 

structure offers practical utility in contexts involving the interaction of high-dimensional data. As highlighted in 

the work of (Kansu et al., 2020), octonionic frameworks have been employed in formulating field equations for 

dyons that inherently preserve duality symmetry. These field expressions, structurally akin to Maxwell's 

equations, effectively model the interplay between electric and magnetic fields. Owing to their eight-

dimensional composition, octonions serve as a natural medium for encoding intricate interdependencies 

between electromagnetic components within a single formalism. 

In machine learning, octonions have proven effective for handling high-dimensional data. Wu et al. (2020) 

proposed deep octonion networks (DONs), which utilize the compact algebraic structure of octonions to fuse 

multi-dimensional features across neural network layers. Within this framework, octonions enable efficient data 

representation and processing, with tasks like image classification demonstrating improved performance and 

convergence. 

Furthermore, Takahashi et al. (2021) extended the use of octonions to control systems, specifically for the 

dynamic control of robot manipulators. In this context, octonion-valued neural networks capture both spatial 

and temporal dynamics, with their non-associative property allowing the network to model complex multi-axis 

movements necessary for precise manipulator control. 
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Although octonions possess a non-commutative and non-associative nature that poses initial challenges, 

these structures have facilitated innovative uses in fields such as modern theoretical physics, control systems, 

and artificial intelligence, where managing adaptive representations and multi-dimensional data is crucial. 

For in-depth information on octonions, their subalgebraic structures, and interdisciplinary applications, one 

can refer to the works by (Albert, 1934; Baez, 2001; Conway and Smith, 2005; Dray and Manogue, 2015; 

Okubo, 1995). 

The investigation of sequence convergence and summability has constituted a foundational branch of pure 

mathematics, with its theoretical advancements influencing diverse domains such as applied mathematics, 

computational modelling, computer science, topology, functional and Fourier analysis, and measure theory. 

Among various convergence notions, statistical convergence has garnered growing attention in recent decades. 

Originally introduced by Fast (1951), this concept has since undergone extensive development, with numerous 

researchers exploring its theoretical implications and practical applications across multiple mathematical 

disciplines. Recently, several authors have investigated various aspects of statistical convergence and its 

generalizations in different settings (see, e.g., (Belen & Mohiuddine, 2013; Mohiuddine, 2016; Mohiuddine 

& Alamri, 2019; Mursaleen & Mohiuddine, 2014)). These studies provide significant motivation for 

extending the notion of convergence to more generalized algebraic structures such as octonion-valued metric 

spaces. 

In particular, Abazari (2022) defined statistically convergent sequences according to metrics on 

generalised metric spaces and investigated the fundamental properties of this form of statistical convergence. 

Gürdal and Şahiner (2012) contributed by introducing statistical convergence concepts for sequences in 2-

Banach spaces, statistical convergence and order for linear operators and elements, conditions for the statistical 

convergence and stability of linear operators, and some applications. Gürdal and Yamancı (2015) focused on 

the relationship between statistical convergence and Berezin symbols to solve some problems in operator 

theory. Li et al. (2015) introduced statistical convergence in conic metric spaces, discussed statistically ordered 

compact spaces, and investigated their behaviour. Savaş et al. (2022) investigated the behaviour of statistically 

convergent sequences for fuzzy variables in the credibility space, while Nabiev et al. (2019) introduced 

statistically localised sequences in metric spaces and studied their fundamental properties, and Yamancı and 

Gürdal (2016) proposed the concept of discrete statistical Borel convergence, providing characterisations of 

Schatten--von Neumann class operators via Berezin symbols. Later on it was further investigated rom the 

sequence space point of view and linked with summability theory by Aral et al. (2024), Gürdal and Kişi 

(2024), Indumathi et al. (2023), Kişi (2023), Kolancı and Gürdal (2023) and many others. 
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By introducing a suitable partial order on the algebra of octonions, this study develops and formalizes key 

analytical concepts adapted to this non-associative setting, including statistical convergence, statistical Cauchy 

sequences, and the notion of statistical density for subsequences. These concepts are generalized within the 

framework of octonion-valued metric spaces (hereafter referred to as OVMSs), allowing us to explore their 

properties and the connections between them. This study is also motivated by prior work such as Çetin et al. 

(2025) and Kişi et al. (2025) which examined convergence and ideal convergence in octonion-valued settings. 

Moreover, we explore the impact of octonions' non-associative nature on statistical convergence and related 

sequence properties. This includes investigations into statistical Cauchy sequences and the characteristics of 

statistically dense subsequences. OVMSs extend usual metric spaces by leveraging the rich and complex 

algebraic properties of octonions, which introduce a higher-dimensional and non-associative framework. Unlike 

conventional vector spaces or rings, octonions lack the multiplicative associativity property, making them 

particularly intriguing when applied in these defined metric spaces. The distinctive algebraic structure of 

octonions offers not only an enriched perspective on convergence behavior but also introduces new 

mathematical challenges and opportunities for further exploration. 

2. Literature  

We now turn our attention to the octonion algebra 𝑂, which constitutes a non-associative generalization of 

the classical quaternion division algebra. 

The construction of 𝑂 proceeds by extending the quaternionic basis 1, 𝑖, 𝑗, 𝑘 with additional imaginary 

units, beginning with ℓ, to form a complete eight-dimensional basis. The resulting algebraic framework, 

including its multiplication rules and illustrative representations, is developed in alignment with the exposition 

provided in (Fiorenza et al., 2021). 

 



S. Çetin, Ö. Kişi and M. Gürdal       Statistical convergence within octonion 

___________________________________________________________________________________________________________  

62 
 

Thus, any element 𝔵 ∈ 𝑂  can be represented as:  

𝔵 = 𝑜0 + 𝑜1𝑒1 + 𝑜2𝑒2 + 𝑜3𝑒3 + 𝑜4𝑒4 + 𝑜5𝑒5 + 𝑜6𝑒6 + 𝑜7𝑒7,   𝑜𝑛 ∈ ℝ,   where 𝑛 = 0, … , 7. 

A standard basis for the octonion algebra 𝑂 is given by the set 1, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, comprising one real unit 

and seven distinct imaginary units. The comprehensive multiplication rules for these basis elements are 

presented in the table in the study (Kişi et al., 2025; Çetin et al., 2025). 

Octonions can be expressed as an ordered tuple of eight real components (𝑜0, 𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5, 𝑜6, 𝑜7) 

where addition is performed coordinate-wise and multiplication follows the rules outlined in a designated 

multiplication table. The initial component 𝑜0 is referred to as the real part, whereas the subsequent seven 

components (𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5, 𝑜6, 𝑜7) make up the imaginary part. Therefore, as previously mentioned, every 

quaternion may be expressed as (𝑜0, 𝑢↔),where 𝑢↔ = (𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5, 𝑜6, 𝑜7) represents the imaginary 

components and 𝑜0 denotes the real part. From this representation, the following properties become readily 

apparent:  

𝔵  : = (𝑜0, 𝑢↔),   𝑢↔ ∈ ℝ7;   𝑜0 ∈ ℝ 

= (𝑜0, (𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5, 𝑜6, 𝑜7));  𝑜0, 𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5, 𝑜6, 𝑜7 ∈ ℝ 

= 𝑜0 + 𝑜1𝑒1 + 𝑜2𝑒2 + 𝑜3𝑒3 + 𝑜4𝑒4 + 𝑜5𝑒5 + 𝑜6𝑒6 + 𝑜7𝑒7. 

 We now introduce a partial ordering relation ≼ on the octonion algebra 𝑂, taking into account its inherent non-

associativity and non-commutativity, defined as follows. 

𝔵 ≼ 𝔵′ iff 𝑅𝑒(𝔵) ≤ Re(𝔵′), Im𝑒 (𝔵) ≤ Im𝑒(𝔵′),  𝔵, 𝔵′ ∈ 𝐻;  𝑒 = 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 

where Im𝑒𝑛
= 𝑜𝑛; 𝑛 = 1, … ,7.  

To verify that 𝔵 ≼ 𝔵′, it suffices that at least one of the 256 conditions---derived from all possible combination 

sums between 0 to 8 is satisfied. A detailed analysis of the aforementioned 256 conditions shows that OVMSs 

can be defined as a generalization of complex metric spaces, originally introduced by Azam et al. (2011), by 

considering the codomain to be the field of complex numbers. 

Definition 2.1. (Azam et al., 2011; Hadzic & Gajic, 1986) Given a non-empty set 𝑆. If the transformation 

𝛺𝐶: 𝑆 × 𝑆 ⟼ 𝐶 defined on this set meets the subsequent criteria: 

 0𝐶 ≼ 𝛺𝐶(𝑠, 𝑡), for any 𝑠, 𝑡 ∈ 𝑆 and 𝛺𝐶(𝑠, 𝑡) = 0𝐶 ⇔ 𝑠 = 𝑡 . 

 𝛺𝐶(𝑠, 𝑡) = 𝛺𝐶(𝑡, 𝑠) for any 𝑠, 𝑡 ∈ 𝑆. 

 𝛺𝐶(𝑠, 𝑡) ≼ 𝛺𝐶(𝑠, 𝑣) + 𝛺𝐶(𝑣, 𝑡) for all 𝑠, 𝑡, 𝑣 ∈ 𝑆 . 

Then the pair (𝑆, 𝛺𝐶) is said to be a complex metric space. 
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These are further extended to metric spaces with values in the quaternionic skew field, as described by Ahmed 

et al. (2014). In this context, quaternions provide a non-commutative generalization of such metric spaces, 

allowing their application within the framework of Clifford algebra analysis. 

Definition 2.2. (Ahmed et al., 2014) Let 𝑆 be a nonempty set. A transformation 𝛺𝐶: 𝑆 × 𝑆 ⟼ 𝐻 is said to 

satisfy the following conditions if it meets the criteria listed below. 

 0𝐻 ≼ 𝛺𝐻(𝑠, 𝑡) for any 𝑠, 𝑡 ∈ 𝑆 and 𝛺𝐻(𝑠, 𝑡) = 0𝐻 ⇔ 𝑠 = 𝑡 , 

 𝛺𝐻(𝑠, 𝑡) = 𝛺𝐻(𝑡, 𝑠)  for any 𝑠, 𝑡 ∈ 𝑆, 

 𝛺𝐻(𝑠, 𝑡) ≼ 𝛺𝐻(𝑠, 𝑣) + 𝛺𝐻(𝑣, 𝑡) for every 𝑠, 𝑡, 𝑣 ∈ 𝑆. 

In this case 𝛺𝐻 is referred to as a metric taking values in the quaternions on the set 𝑆, and the structure  

(𝑆, 𝛺𝐻) is known as a quaternion-valued metric space. 

Next, we introduce OVMSs, which provide a noteworthy extension of traditional metric spaces, distinguished 

by their lack of commutativity and associativity. 

The definitions, examples, theorems, and propositions in this section are taken from (Çetin et al., 2025; 

Kişi et al., 2025). 

Definition 2.3. (Çetin et al., 2025; Kişi et al., 2025) Let  𝑆  be a nonempty set. A mapping 𝛺𝑂: 𝑆 × 𝑆 ⟼ 𝑂 is 

called an octonion-valued metric on 𝑆 if it satisfies the following properties: 

 0𝑂 ≼ 𝛺𝑂(𝑠, 𝑡) for every 𝑠, 𝑡 ∈ 𝑆 and 𝛺𝑂(𝑠, 𝑡) = 0𝑂 iff 𝑠 = 𝑡 , 

 𝛺𝑂(𝑠, 𝑡) = 𝛺𝑂(𝑡, 𝑠) for every 𝑠, 𝑡 ∈ 𝑆, 

 𝛺𝑂(𝑠, 𝑡) ≼ 𝛺𝑂(𝑠, 𝑣) + 𝛺𝑂(𝑣, 𝑡) for every 𝑠, 𝑡, 𝑣 ∈ 𝑆. 

If these conditions hold, then the pair (𝑆, 𝛺𝑂) is called an OVMS. 

Example 2.4. Let 𝛺𝑂: 𝑆 × 𝑆 ⟼ 𝑂 be an octonion-valued function defined by 𝛺𝑂(𝔵, 𝔵′) = |𝑜0 − 𝑜0
′ | + |𝑜1 −

𝑜1
′ |𝑒1 + |𝑜2 − 𝑜2

′ |𝑒2 + |𝑜3 − 𝑜3
′ |𝑒3 + |𝑜4 − 𝑜4

′ |𝑒4 + |𝑜5 − 𝑜5
′ |𝑒5 + |𝑜6 − 𝑜6

′ |𝑒6 + |𝑜7 − 𝑜7
′ |𝑒7  where 𝔵, 𝔵′ ∈ 𝑂 

with  

𝔵 = 𝑜0 + 𝑜1𝑒1 + 𝑜2𝑒2 + 𝑜3𝑒3 + 𝑜4𝑒4 + 𝑜5𝑒5 + 𝑜6𝑒6 + 𝑜7𝑒7,   

𝔵′ = 𝑜0
′ + 𝑜1

′ 𝑒1 + 𝑜2
′ 𝑒2 + 𝑜3

′ 𝑒3 + 𝑜4
′ 𝑒4 + 𝑜5

′ 𝑒5 + 𝑜6
′ 𝑒6 + 𝑜7

′ 𝑒7; 

𝑜𝑖, 𝑜𝑖
′ ∈ ℝ;  𝑖 = 0,1,2,3,4,5,6,7. 

Consequently, the pair (𝑂, 𝛺𝑂) constitutes an OVMS. 
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Here, we present an example of an octonion-valued metric constructed on a domain that does not belong 

to the class of conventional numerical sets. 

Example 2.5. Consider the set 𝑋 = {𝑢, 𝑣, 𝑤} consisting of three arbitrary elements. The distances between 

these elements are specified as follows:  

𝛺𝑂(𝑢, 𝑣) = 𝛺𝑂(𝑣, 𝑢) = 3 + 4𝑒1 − 6𝑒2 + 4𝑒3 + 3𝑒4 + 3𝑒5 − 2𝑒6 + 𝑒7 

𝛺𝑂(𝑣, 𝑤) = 𝛺𝑂(𝑤, 𝑣) = 1 + 2𝑒1 + 3𝑒3 − 5𝑒4 − 3𝑒6 + 4𝑒7 

𝛺𝑂(𝑢, 𝑤) = 𝛺𝑂(𝑤, 𝑢) = 2 + 3𝑒1 + 𝑒2 + 𝑒3 − 2𝑒4 + 2𝑒5 − 𝑒6 + 5𝑒7 

𝛺𝑂(𝑢, 𝑢) = 𝛺𝑂(𝑣, 𝑣) = 𝛺𝑂(𝑤, 𝑤) = 0 + 0𝑒1 + 0𝑒2 + 0𝑒3 + 0𝑒4 + 0𝑒5 + 0𝑒6 + 0𝑒7. 

Given the values  

‖𝛺𝑂(𝑢, 𝑣)‖ = 10, ‖𝛺𝑂(𝑢, 𝑤)‖ = 7, ‖𝛺𝑂(𝑤, 𝑣)‖ = 8, 

‖𝛺𝑂(𝑢, 𝑣) + 𝛺𝑂(𝑢, 𝑤)‖ = √195, ‖𝛺𝑂(𝑢, 𝑣) + 𝛺𝑂(𝑣, 𝑤)‖ = √200, 

‖𝛺𝑂(𝑤, 𝑣) + 𝛺𝑂(𝑢, 𝑤)‖ = √169 = 13, 

it follows from direct computation that the conditions specified in Definition 2.3 are indeed satisfied. 

3. Main Results 

This section introduces several definitions related to OVMSs, based on the framework established in earlier 

work. The focus is on concepts such as convergent sequences, Cauchy sequences, and bounded sequences, 

which have been extended through a statistical generalization of the traditional definitions. These notions are 

applicable when a large portion, rather than the entirety, of the sequence's terms demonstrate properties like 

convergence, Cauchy behavior, or density. 

It is clear from the foregoing definitions and illustrative examples that the proposed framework generalizes 

the classical concept of a metric in a natural and consistent manner, seamlessly incorporating the complex- and 

quaternion-valued cases as special instances. To further elucidate the interconnections among these structures, 

we now present the following propositions. 

Proposition 3.1. Any metric space defined over the quaternions can be naturally embedded into an OVMS, 

preserving the underlying structure. 

Proposition 3.2. Each metric space defined over the complex field can be regarded as a special case of both 

quaternion-valued and OVMSs. 
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Proposition 3.3. Every standard metric space equipped with real-valued distances can be naturally embedded 

into a complex-valued, quaternion-valued, and OVMS via the well-known algebraic inclusions among the 

number systems. 

Accordingly, we now move on to introduce several fundamental notions that naturally arise from the 

preceding definition. 

Definition 3.4. A point 𝑠 ∈ 𝑆 is considered an interior point of the set 𝐴 ⊂ 𝑆 if there exists an octonion 0𝑂 ≺

𝑟 ∈ 𝑂 such that  

𝐵(𝑠, 𝑟) = {𝑡 ∈ 𝑆  :  𝛺𝑂(𝑠, 𝑡) ≺ 𝑟} ⊂ 𝐴. 

Definition 3.5. A point 𝑠 ∈ 𝑆 is defined as a limit point of 𝐴 ⊂ 𝑆 if for any 0𝑂 ≺ 𝑟 ∈ 𝑂  

𝐵(𝑠, 𝑟) ∩ (𝐴 − {𝑠}) ≠ ∅. 

Definition 3.6. A set 𝑂 is considered open if every element of 𝑂 is an interior point of 𝑂. A subset 𝐶 ⊂ 𝑆 is 

regarded as closed if it contains all its limit points. The family  

𝐹 = {𝐵(𝑠, 𝑟):   𝑠 ∈ 𝑆, 0𝑂 ≺ 𝑟} 

 constitutes a subbasis for the Hausdorff topology 𝜏 defined on the set 𝑆. 

Now, we will recall the definitions, examples, theorems, and propositions related to the concepts of 

convergence within the previously defined OVMSs and these unique mathematical structures. Since the 

theorems and propositions presented here will be given without proofs, interested readers can refer to (Çetin et 

al., 2025) and (Kişi et al., 2025)) for the corresponding proofs. 

Definition 3.7. Let 𝑠 ∈ 𝑆 and let 𝑠𝑘 be a sequence in 𝑆. We say that (𝑠𝑘) converges to 𝑠 if for every 𝔵 ∈ 𝑂 with 

0𝑂 ≺ 𝔵, there exists 𝑘0 ∈ ℕ such that for all 𝑘 > 𝑘0, 

𝛺𝑂(𝑠𝑘 , 𝑠) ≺ 𝔵, 

In this case (𝑠𝑘) is called a convergent sequence with limit point 𝑠; denoted by  

𝑠𝑘 → 𝑠 as 𝑘 → ∞, or simply lim
𝑘→∞

𝑠𝑘 = 𝑠. 

Theorem 3.8. Let (𝑠𝑘) be a sequence in the OVMS (𝑆, 𝛺𝑂). If (𝑠𝑘) converges to a point 𝑠0 ∈ 𝑆, then any 

arbitrary subsequence (𝑠𝑘𝑛
) also converges, and this subsequence converges to the point 𝑠0. 
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Corollary 3.9. In both the quaternion-valued metric space (𝑆, 𝛺𝐻) and the complex-valued metric space 

(𝑆, 𝛺𝐶), every subsequence of a convergent sequence converges to the same point. 

Definition 3.10. A sequence (𝑠𝑘) in the octonion-valued metric space (𝑆, 𝛺𝑂) is called a Cauchy sequence if for 

every 𝔵 ∈ 𝑂 with 0𝑂 ≺ 𝔵, there exists 𝑘0 ∈ ℕ such that  

𝛺𝑂(𝑠𝑘+𝑚 , 𝑠𝑘) ≺ 𝔵 for all 𝑘 > 𝑘0 and 𝑚 ∈ ℕ. 

If every Cauchy sequence in (𝑆, 𝛺𝑂) converges to a point in 𝑆, then the space (𝑆, 𝛺𝑂) is said to be complete, 

and (𝑆, 𝛺𝑂) is referred to as a complete octonion-valued metric space. 

Note that not every OVMS must be complete. The following example of an OVMS supports this. 

Example 3.11. Let 𝛺𝑂  :  ℕ+ × ℕ+ → 𝑂 be an octonion-valued function defined by 

Ω0(𝑛, 𝑚) = |
1

𝑛
−

1

𝑚
| + |

2

𝑛
−

2

𝑚
| 𝑒1 + |

3

𝑛
−

3

𝑚
| 𝑒2 + |

4

𝑛
−

4

𝑚
| 𝑒3 + |

5

𝑛
−

5

𝑚
| 𝑒4 + |

6

𝑛
−

6

𝑚
| 𝑒5 + |

7

𝑛
−

7

𝑚
| 𝑒6 + |

8

𝑛
−

8

𝑚
| 𝑒7 

where 𝑛, 𝑚 ∈ ℕ+. Then (ℕ+, 𝛺𝑂) defines an octonion-valued metric space. Nevertheless, due to the fact that 0 

is not an element of the set of positive natural numbers ℕ+, the space in question does not satisfy the 

completeness property. 

Theorem 3.12. If (𝑠𝑘) be a Cauchy sequence in the OVMS (𝑆, 𝛺𝑂) has the subsequence (𝑠𝑘𝑛
) converges to the 

point 𝑠0, then Cauchy sequence (𝑠𝑘) also converges, and this Cauchy sequence converges to the point 𝑠0. 

Corollary 3.13. In both the quaternion-valued metric space (𝑆, 𝛺𝐻) and the complex-valued metric space 

(𝑆, 𝛺𝐶), if an arbitrary Cauchy sequence has convergent subsequence, then the Cauchy sequence converges to 

the same point. 

Definition 3.14. A sequence (𝑠𝑘) in an OVMS (𝑆, 𝛺𝑂) is said to be statistically convergent to a point 𝑠 ∈ 𝑆, 

𝑠𝑘 →
𝑠𝑡𝑔

𝑠, 

if for every 0𝑂 ≺ 𝔵, the following condition holds:  

lim
𝑁⇢∞

|{𝑘 ≤ 𝑁: 𝛺𝑂(𝑠𝑘, 𝑠) ⊀ 𝔵}| = 0. 

In this formulation, the quantity  

|{𝑘 ≤ 𝑁: 𝛺𝑂(𝑠𝑘, 𝑠) ⊀ 𝔵}| 
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counts the number of terms in the sequence for which the octonion-valued "distance" to the point 𝑠 does not fall 

strictly below the bound 𝔵 with respect to the partial order defined in Definition 2.3. The statistical convergence 

criterion requires that the density of such indices tends to zero, i.e., 

|{𝑘 ≤ 𝑁: 𝛺𝑂(𝑠𝑘, 𝑠) ⊀ 𝔵}|

𝑁
→ 0 

as 𝑁 → 0. This condition is necessary for the sequence  (𝑠𝑘)  to be statistically convergent to the point 𝑠 in the 

OVMS. 

In classical convergence, for all 0𝑂 ≺ 𝔵 ∈ 𝑂, there exists 𝑁 ∈ ℕ such that for 𝑘 ≥ 𝑁, 𝛺𝑂(𝑠𝑘, 𝑠) ≺ 𝔵 

holds. In statistical convergence, 𝛺𝑂(𝑠𝑘, 𝑠) ≺ 𝔵 must hold only for the majority of the terms in the sequence; 

some terms are allowed to be far from 𝑠. 

Statistical convergence is a generalized version of the classical convergence concept, indicating that the 

majority of the terms in a sequence converge to a point. This concept can be considered a weaker form of 

classical convergence. 

Example 3.15. Let 𝑆 be a nonempty set and let (𝑠𝑘) be a sequence in 𝑆 defined via an octonion-valued metric 

𝛺𝑂 . Define the sequence elements through the function 𝑓: ℕ → 𝑆 as follows: 

𝑓(𝑘) = 𝑠𝑘 = {
𝑠8, if 𝑘 = 𝑛3for some 𝑛 ∈ ℕ,
𝑠2, otherwise.

 

Here, the exceptional set 𝐴 = {𝑘  :   𝑘 = 𝑛3 for some 𝑛 ∈ ℕ} ⊂ ℕ. The asymptotic (natural) density of 𝐴 is 

given by  

|𝐴 ∩ {1,2, . . . , 𝑁}|

𝑁
≈

1

𝑁2/3
, 

 and since lim
𝑁⇢∞

1

𝑁2/3 = 0, the set of indices has density zero. Therefore, the sequence (𝑠𝑘) is statistically 

convergent, and its statistical limit is 𝑠2; that is, 

𝑠𝑘 →
𝑠𝑡𝑔

𝑠2. 

Theorem 3.16. In any OVMS (𝑆, 𝛺𝑂), every convergent sequence is also statistically convergent with respect to 

the same limit point. 

Proof. According to the notion of convergence given in Definition 3.7, for every 𝔵 ∈ 𝑂 with 0𝑂 ≺ 𝔵, there exists 

an index 𝑘0 ∈ ℕ such that for all 𝑘 > 𝑘0, the inequality 
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𝛺𝑂(𝑠𝑘 , 𝑠) ≺ 𝔵 

holds. Consequently, the number of terms that fail to satisfy this condition must be finite. Since the asymptotic 

density of any finite subset of the natural numbers is zero, it follows from Definition 3.14 that the sequence is 

statistically convergent. 

Statistical convergence, unlike standard convergence, requires that the majority of the terms, rather than 

all of them, are close to 𝑠. This concept is particularly significant in the analysis of large data sets and complex 

structures. 

Theorem 3.17.  Given an OVMS (𝑆, 𝛺𝑂) and a sequence (𝑠𝑘) in this space, a necessary and sufficient condition 

for the sequence (𝑠𝑘) to converge statistically to 𝑠 is 

‖𝛺𝑂(𝑠𝑘, 𝑠)‖ →
𝑠𝑡𝑔

0 

as 𝑘 → ∞. 

Proof. Let the sequence (𝑠𝑘) statistical converge to point 𝑠. Given a real number 𝜀 > 0, suppose that  

𝑜 =
𝜀

2√2
+ 𝑒1

𝜀

2√2
+ 𝑒2

𝜀

2√2
+ 𝑒3

𝜀

2√2
+ 𝑒4

𝜀

2√2
+ 𝑒5

𝜀

2√2
+ 𝑒6

𝜀

2√2
+ 𝑒7

𝜀

2√2
. 

From the definition of statistical convergence, for ∀0𝑂 ≺ 𝔵′ ∈ 𝑂, we have  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠) ⊀ 𝔵′}| = 0. 

In this case, specially for 0𝑂 ≺ 𝔵 ∈ 𝑂 and there exists  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑛 , 𝑠) ⊀ 𝔵}| = lim

𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  : ‖𝛺𝑂(𝑠𝑘, 𝑠)‖ ≥ ‖𝔵‖ = 𝜀}| = 0. 

Thus, we obtain  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  : ‖𝛺𝑂(𝑠𝑘, 𝑠)‖ < ‖𝔵‖ = 𝜀}| = 1. 

Hence, ‖𝛺𝑂(𝑠𝑘, 𝑠)‖ →
𝑠𝑡𝑔

0 as 𝑘 → ∞. 

On the other hand, suppose that ‖𝛺𝑂(𝑠𝑘, 𝑠)‖ →
𝑠𝑡𝑔

0 as 𝑘 → ∞. In this case, for a given 𝔵 ∈ 𝑂 with 0𝑂 ≺ 𝔵, 

there exists a real number 𝛿 > 0, such that for any 𝔵′ ∈ 𝑂, the following holds:  

‖𝔵′‖ < 𝛿 ⇒ 𝔵′ ≺ 𝔵. 

For this 𝛿, we find  
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lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  : ‖𝛺𝑂(𝑠𝑘, 𝑠)‖ ≥ ‖𝔵‖ = 𝜀 ≥ 𝛿 ≥ ‖𝔵′‖}| = lim

𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠) ⊀ 𝔵′ = 0. }| 

This leads to  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  : ‖𝛺𝑂(𝑠𝑘, 𝑠)‖ < ‖𝔵‖ = 𝜀}| = 1. 

which implies 

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘 , 𝑠) ⊀ 𝔵}| = 0. 

Hence, the sequence (𝑠𝑘) converges statistically to point 𝑠. 

Theorem 3.18. Let (𝑠𝑘) be a sequence in the OVMS (𝑆, 𝛺𝑂). Let both 𝑠𝑘 →
𝑠𝑡𝑔

𝑠0 and 𝑠𝑘 →
𝑠𝑡𝑔

𝑡0 hold in this metric 

space. In that case, 𝑠0 = 𝑡0. 

Proof. Assume that 𝑠𝑘 →
𝑠𝑡𝑔

𝑠0 and 𝑠𝑘 →
𝑠𝑡𝑔

𝑡0. In connection with this, and by the definition of statistical 

convergence provided in Definition 3.14, for any 𝜀 > 0 and for every 𝔵 ∈ 𝑂 with 0𝑂 ≺ 𝔵, consider the case 

where  

𝔵 =
𝜀

4√2
+ 𝑒1

𝜀

4√2
+ 𝑒2

𝜀

4√2
+ 𝑒3

𝜀

4√2
+ 𝑒4

𝜀

4√2
+ 𝑒5

𝜀

4√2
+ 𝑒6

𝜀

4√2
+ 𝑒7

𝜀

4√2
. 

The following equalities hold:  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠0) ⊀ 𝔵}| = 0, 

and  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑡0) ⊀ 𝔵}| = 0. 

By applying the triangle inequality (the third axiom) of the OVMS, we deduce that  

0𝑂 ≼ 𝛺𝑂(𝑠0, 𝑡0) ≼ 𝛺𝑂(𝑠0, 𝑠𝑘) + 𝛺𝑂(𝑠𝑘 , 𝑡0), 

and as a result,  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠0) + 𝛺𝑂(𝑠𝑘, 𝑡0) ⊀ 𝔵}| = 0. 

By the partial ordering property, it follows that  

0 ≤ ‖𝛺𝑂(𝑠0, 𝑡0)‖ ≤ ‖𝛺𝑂(𝑠0, 𝑠𝑘) + 𝛺𝑂(𝑠𝑘 , 𝑡0)‖ ≤ ‖𝛺𝑂(𝑠0, 𝑠𝑘)‖ + ‖𝛺𝑂(𝑠𝑘, 𝑡0)‖ < 𝜀. 
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From this, we conclude that ‖𝛺𝑂(𝑠0, 𝑡0)‖ = 0, which implies 𝛺𝑂(𝑠0, 𝑡0) = 0𝑂. Finally, invoking the first axiom 

of the octonion-valued metric space, we conclude that 𝑠0 = 𝑡0. This establishes the desired result and completes 

the proof. 

Proposition 3.19. In both cases the quaternion-valued metric space (𝑆, 𝛺𝐻) and the complex-valued metric 

space (𝑆, 𝛺𝐶), the statistical limit is unique. 

Definition 3.20. Consider a sequence (𝑠𝑘) in the framework of an OVMS (𝑆, 𝛺𝑂). For a sequence (𝑠𝑘), a 

subsequence (𝑠𝑘𝑛
) is called a statistical cluster subsequence if: 

∀0 ≺ 𝔵 ∈ 𝑂 such that lim
𝑁→∞

𝑠𝑢𝑝
1

𝑁
|{𝑛 ≤ 𝑁: 𝛺𝑂(𝑠𝑘𝑛

, 𝑠) ⊀ 𝔵}| = 0. 

Theorem 3.21. Let (𝑠𝑘) and (𝑡𝑘) be two sequences in the OVMS (𝑆, 𝛺𝑂). If 𝑡𝑘 →
𝑠𝑡𝑔

𝑠, and 𝛺𝑂(𝑠𝑘 , 𝑠) ≼ 𝛺𝑂(𝑡𝑘 , 𝑠) 

for each 𝑘 ∈ 𝑁, then 𝑠𝑘 →
𝑠𝑡𝑔

𝑠. 

Proof. Since 𝑡𝑘 →
𝑠𝑡𝑔

𝑠, it follows from Theorem 3.17 that 

‖𝛺𝑂(𝑡𝑘, 𝑠)‖ →
𝑠𝑡𝑔

0  as  𝑘 → ∞. 

For each 0𝑂 ≺ 𝔵 ∈ 𝑂 and 𝑘 ∈ ℕ, we observe that 

{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑡𝑘, 𝑠) ≺ 𝔵} ⊆ {𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠) ≺ 𝔵}. 

Thus, 

1 = lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑡𝑘, 𝑠) ≺ 𝔵}| ≤ lim

𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠) ≺ 𝔵}|. 

Since the asymptotic density can be at most 1, by Definition 3.14, for all 0𝑂 ≺ 𝔵, we have  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘 , 𝑠) ⊀ 𝔵}| = 0. 

Consequently, 𝑠𝑘 →
𝑠𝑡𝑔

𝑠.  

Definition 3.22. (Li et al., 2015) A subsequence (𝑠𝑘𝑛
) of a sequence (𝑠𝑘) is statistically dense in (𝑠𝑘) if the 

index set {𝑘𝑛 : 𝑛 ∈ ℕ} is a statistically dense subset of ℕ, in other words,  

lim
𝑁→∞

1

𝑁
|{𝑘𝑛 ≤ 𝑁  :   𝑛 ∈ ℕ}| = 1. 

Theorem 3.23. In an OVMS (𝑆, 𝛺𝑂), let (𝑠𝑘) be an arbitrary sequence. In this case, the following conditions 

are equivalent: 

1) The sequence (𝑠𝑘) is statistically convergent in the octonion-valued space (𝑆, 𝛺𝑂). 

2) There exists a sequence (𝑡𝑘) in 𝑆 that converges such that 𝑠𝑘 = 𝑡𝑘  for almost all 𝑘 ∈ ℕ. 
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3) The sequence (𝑠𝑘) contains a statistically dense subsequence (𝑠𝑘𝑛
), which is a convergent sequence. 

4) The sequence (𝑠𝑘) contains a statistically dense subsequence (𝑠𝑘𝑛
), which is statistically convergent. 

Proof. (𝟏) ⇒ (𝟐). Assume that 𝑠𝑘 →
𝑠𝑡𝑔

𝑠. By Definition 3.14, for all 0𝑂 ≺ 𝔵, we have 

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘 , 𝑠) ⊀ 𝔵}| = 0. 

Specially, let ‖𝔵′‖ = 1  for a chosen element 𝔵′ ∈ 𝑂. Then 

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠) ≺

𝔵′

3
}| = 1. 

This implies that there exists 𝑁1 ∈ ℕ such that  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘 , 𝑠) ≺

𝔵

3
}| > 1 −

1

3
 

for every 𝑁 > 𝑁1. A sequence (𝑁𝑛) of natural numbers can be chosen so that 

lim
𝑁→∞

1

𝑁
|{𝑙 ≤ 𝑁  :  𝛺𝑂(𝑠𝑙 , 𝑠) ≺

𝔵′

3𝑛
}| > 1 −

1

3𝑛
 

is satisfied whenever for all 𝑁 > 𝑁𝑛. Suppose that 𝑁𝑛 < 𝑁𝑛+1 for each 𝑛 ∈ ℕ. Let 𝑡𝑙 be defined as 

𝑡𝑙 = {

𝑠𝑙, 1 ≤ 𝑙 ≤ 𝑁1,

𝑠𝑙, 𝑁𝑛 < 𝑙 ≤ 𝑁𝑛+1, 𝛺𝑂(𝑠𝑙 , 𝑠) ≺
𝔵′

3𝑛
,

𝑠,   otherwise.

 

Given 0𝑂 ≺ 𝔵 ∈ 𝑂, choose 𝑛 ∈ ℕ such that 
𝔵′

3𝑛 ≺ 𝑜. Then, 𝛺𝑂(𝑡𝑙 , 𝑠) ≺ 𝔵 for all 𝑙 > 𝑁𝑛, indicating that the 

sequence (𝑡𝑙) converges to 𝑠. 

For all 0𝑂 ≺ 𝔵 ∈ 𝑂, there exists 𝑛 ∈ 𝑁 with 
𝔵′

3𝑛 < 𝑜. Let 𝑁 ∈ 𝑁. If 𝑁𝑛 < 𝑁 ≤ 𝑁𝑛+1, then  

{𝑙 ≤ 𝑁  :  𝑡𝑙 ≠ 𝑠𝑙} ⊂ {1,2, . . , 𝑁} − {𝑙 ≤ 𝑁  :  𝛺𝑂(𝑠𝑙, 𝑠) ≺
𝔵′

3𝑛
}, 

so  

1

𝑁
|{𝑙 ≤ 𝑁  :  𝑡𝑙 ≠ 𝑠𝑙}| ≤ 1 −

1

𝑁
|{𝑙 ≤ 𝑁  :  𝛺𝑂(𝑠𝑙, 𝑠) ≺

𝔵

3𝑛
}| <

1

3𝑛
< ‖𝔵‖. 

Therefore lim
𝑁→∞

1

𝑁
|{𝑙 ≤ 𝑁  :  𝑡𝑙 ≠ 𝑠𝑙}| = 0. Hence 𝑠𝑙 = 𝑡𝑙 for almost every 𝑙 ∈ ℕ. 

(2) ⇒ (3). Assume that (𝑡𝑘) is a convergent sequence in 𝑆 with 𝑠𝑘 = 𝑡𝑘  for almost every 𝑘 ∈ ℕ. In this 

situation, lim
𝑁→∞

1

𝑁
|{𝑙 ≤ 𝑁  :  𝑡𝑙 ≠ 𝑠𝑙}| = 0. If we take (𝑡𝑘) = (𝑠𝑘𝑛

), in this situation, from Definition 3.7 and 

Definition 3.22, (𝑡𝑘) is both a convergent sequence and a statistically dense subsequence of (𝑠𝑘). 
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(𝟑) ⇒ (𝟒) If we take (𝑡𝑘) = (𝑠𝑘𝑛
) as a subsequence, it can be directly seen from the definition of a statistically 

dense subsequence (Definition 3.22) and the definition of statistical convergence (Definition 3.14). 

(𝟒) ⇒ (𝟏). Assume that there exists a statistically dense subsequence (𝑠𝑘𝑛
) of the sequence (𝑠𝑘) with the 

sequence (𝑠𝑘𝑛
) is statistically convergent. By the definition of statistical convergence, we have for all 0𝑂 ≺ 𝔵, 

we have  

lim
𝑁→∞

1

𝑁
|{𝑘𝑛 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘𝑛

, 𝑠) ⊀ 𝔵}| = 0. 

and let  

𝑠𝑘𝑛
→

𝑠𝑡𝑔
𝑠  as  𝑛 → ∞. 

It follows that 

lim
𝑁→∞

1

𝑁
|{𝑘𝑛 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘𝑛

, 𝑠) ≺ 𝔵}| = 1. 

Because it happens that for each 0𝑂 ≺ 𝑜 ∈ 𝑂,  

{𝑘𝑛 ∈ 𝑁  :  𝛺𝑂(𝑠𝑘𝑛
, 𝑠) ≺ 𝔵} ⊂ {𝑘 ∈ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠) ≺ 𝔵}, 

and  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠) ≺ 𝔵}| ≥ lim

𝑁→∞

1

𝑁
|{𝑘𝑛 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘𝑛

, 𝑠) ≺ 𝔵}| = 1. 

We have  

𝑠𝑘 →
𝑠𝑡𝑔

𝑠  as  𝑘 → ∞. 

Corollary 3.24. In the OVMS (𝑆, 𝛺𝑂), every statistically convergent sequence admits a subsequence that 

converges in the usual sense within the same space. 

Definition 3.25.  A sequence (𝑠𝑘) in an OVMS (𝑆, 𝛺𝑂) is called a statistical Cauchy sequence if, for every 𝔵 ∈

𝑂 with 0𝑂 ≺ 𝔵, there exists an index 𝑙 ∈ ℕ+ (possibly depending on the norm of 𝔵) such that  

lim
𝑁→∞

1

𝑁
|{𝑘𝑛 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘𝑛

, 𝑠) ⊀ 𝔵}| = 0. 

If we carefully examine this definition,  

|{𝑘𝑛 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠𝑙) ⊀ 𝔵}| 

represents the number of terms in the sequence (𝑠𝑘) in 𝑆 whose octonion value, indicating the distance between 

the elements of the sequence, does not precede 𝔵 according to the partial ordering relation given in Definition 

2.3. The ratio of these terms to the total number of terms 𝑁 must approach zero as 𝑁 → ∞. In other words,  

|{𝑘𝑛 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠𝑙) ⊀ 𝔵}|

𝑁
→ 0 
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as 𝑁 → ∞. This is a necessary condition for the sequence to be statistically Cauchy. 

In accustomed definition Cauchy sequence, for every 0𝑂 ≺ 𝔵 ∈ 𝑂, we have 𝑁 ∈ ℕ with as 𝑘, 𝑙 ≥ 𝑁, 

𝛺𝑂(𝑠𝑘, 𝑠𝑙) ≺ 𝔵 satisfies. In statistical Cauchy sequence, 𝛺𝑂(𝑠𝑘, 𝑠𝑙) ≺ 𝔵 must satisfy only for the majority of the 

terms in the sequence; it is acceptable for the distances between some terms to follow after 𝔵. 

The concept of a statistical Cauchy sequence is a generalized version of the classical Cauchy sequence 

and can be understood as a sequence where the distances between the majority of its terms precede 𝔵 in the 

ordering. 

Theorem 3.26. Let (𝑆, 𝛺𝑂) be an OVMS, and let (𝑠𝑘) be a sequence in 𝑆. Then (𝑠𝑘) is a statistical Cauchy 

sequence iff  

‖𝛺𝑂(𝑠𝑘, 𝑠𝑘+𝑚)‖ →
𝑠𝑡𝑔

0 

as 𝑘 → ∞, where the convergence is in the statistical sense. 

Proof. We assume that (𝑠𝑘) is a statistically Cauchy sequence in 𝑆. From Definition 3.25, as for all 0𝑂 ≺ 𝔵. For 

a given 𝔵 ∈ 𝑂, there exists an index 𝑙 ∈ ℕ+ (possibly depending on the norm |𝔵|) such that  

lim
𝑁→∞

1

𝑁
|{𝑘, 𝑙 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠𝑙) ⊀ 𝔵}| = 0. 

As a given real number 𝜀 > 0, suppose that  

𝔵 =
𝜀

2√2
+ 𝑒1

𝜀

2√2
+ 𝑒2

𝜀

2√2
+ 𝑒3

𝜀

2√2
+ 𝑒4

𝜀

2√2
+ 𝑒5

𝜀

2√2
+ 𝑒6

𝜀

2√2
+ 𝑒7

𝜀

2√2
. 

lim
𝑁→∞

1

𝑁
|{𝑘, 𝑙 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠𝑙) ⊀ 𝔵}| 

= lim
𝑁→∞

1

𝑁
|{𝑘, 𝑙 ≤ 𝑁  : ‖𝛺𝑂(𝑠𝑘, 𝑠𝑙)‖ ≥ ‖𝔵‖ = 𝜀}| = 0. 

In this context, it follows from Theorem 3.17 and Definition 3.14 that  

‖𝛺𝑂(𝑠𝑘, 𝑠𝑙)‖ →
𝑠𝑡𝑔

0  as  𝑘 → ∞. 

On the other hand, we assume that ‖𝛺𝑂(𝑠𝑘, 𝑠𝑘+𝑚)‖ < ‖𝔵‖ →
𝑠𝑡𝑔

0 as 𝑘 → ∞. So, given 𝔵 ∈ 𝑂 with 0𝑂 ≺ 𝔵 , there 

is a real number 𝛿 > 0 such that as 𝔵′ ∈ 𝑂,  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  : ‖𝛺𝑂(𝑠𝑘, 𝑠𝑘+𝑚)‖ ≥ ‖𝔵‖ = 𝜀 ≥ 𝛿 ≥ ‖𝔵′‖}| 

= lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠𝑘+𝑚) ⊀ 𝔵′′}| = 0. 
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Corresponding to this 𝛿, there exists 𝑙 ∈ ℕ+ depending on the norm of 𝔵 ∈ 𝑂, so, we get  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  : ‖𝛺𝑂(𝑠𝑘 , 𝑠𝑙)‖ < ‖𝔵‖ = 𝜀}| = 1. 

This implies that 

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘 , 𝑠) ⊀ 𝔵}| = 0. 

Hence the sequence (𝑠𝑘) is statistical Cauchy sequence. Thus, the proof is complete. 

Theorem 3.27.  In an OVMS, statistical convergence of a sequence implies that the sequence is statistical 

Cauchy. 

Proof. Let (𝑠𝑘) be a sequence in the OVMS (𝑆, 𝛺𝑂), and suppose that 𝑠𝑘 →
𝑠𝑡𝑔

𝑠. Then, for every 𝔵 ∈ 𝑂 with 0𝑂 ≺

𝔵, the following holds:  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘 , 𝑠) ⊀ 𝔵}| = 0. 

Additionally, by the independence of the representation of statistical convergence and by its definition, for 

every 0𝑂 ≺ 𝔵′, there exists a 𝐾 ∈ ℕ such that when 𝑘, 𝑙 > 𝐾, and given the partial ordering definition above and 

the fact that 0𝑂 ≺ 𝔵′ ∈ 𝑂, it follows for the octonion 
𝔵′

2
 that 0𝑂 ≺

𝔵′

2
∈ 𝑂. Furthermore,  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠) ⊀

𝔵′′

2
}| = 0. 

and  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑙 , 𝑠) ⊀

𝔵′

2
}| = 0. 

hold. 

Thus, for indices 𝑘, 𝑙 > 𝐾, it follows from the triangle inequality (the third axiom) of the OVMS that: 

𝛺𝑂(𝑠𝑘, 𝑠𝑙) ≼ 𝛺𝑂(𝑠𝑘, 𝑠) + 𝛺𝑂(𝑠, 𝑠𝑙) = 𝔵′, 

so for each 𝑁 ∈ ℕ,  

{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠) ≺ 𝔵′′} ⊂ {𝑘, 𝑙 ≤ 𝑁  :  𝛺𝑂(𝑠𝑘, 𝑠𝑙) ≺ 𝔵′}, 

and  

lim
𝑁→∞

1

𝑁
|{𝑘 ≤ 𝑁  :  𝛺𝑂(𝑠𝑙, 𝑠𝑘) ⊀ 𝔵′′}| = 0. 

Therefore, since 𝛺𝑂(𝑠𝑘, 𝑠𝑙) ≺ 𝔵′ holds for every 0𝑂 ≺ 𝔵′ ∈ 𝑂, the sequence (𝑠𝑘) is a statistical Cauchy 

sequence. The proof is complete. 
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Proposition 3.28. In both quaternion-valued and complex-valued metric spaces, every statistically convergent 

sequence is also a statistical Cauchy sequence. 

Definition 3.29.  If every statistically Cauchy sequence in an OVMS (𝑆, 𝛺𝑂) is statistically convergent, then the 

space (𝑆, 𝛺𝑂) is called a statistically complete octonion-valued metric space. 

Corollary 3.30. Every statistically complete OVMS is a complete. 

Note that not every OVMS must be statistically complete. The following example of an OVMS supports 

this. 

Example 3.31. Let 𝑑𝑂 : ℕ+ × ℕ+ → 𝑂 be an octonion valued function defined by  

𝑑𝑂(𝑛, 𝑚) = {
1𝑂 , if 𝑚 is prime,
𝛺𝑂(𝑛, 𝑚), otherwise,

 

where 𝑛, 𝑚 ∈ ℕ+ and 𝛺𝑂(𝑛, 𝑚) is defined as in Example 3.11. Then (ℕ+, 𝑑𝑂) defines an octonion valued 

metric space. However, since it is 0 ∉ ℕ+, this OVMS is not statistically complete. 

A statistically dense subsequence is not necessarily statistically Cauchy. Statistical density and statistical 

Cauchy-ness are distinct concepts, and their relationship depends on the structure of the sequence. Statistical 

density implies that the sequence clusters around certain points or values, while statistical Cauchy-ness 

indicates that the distances between terms of the sequence decrease in a controlled manner. However, if a 

sequence has a statistically dense subsequence, then this subsequence is statistically convergent within the 

sequence, and thus it is also a statistically Cauchy subsequence.  

Remark 3.32. Every ring forms a module over itself, and every field forms a vector space over itself, as is 

commonly known. Let's be clear, though, that octonions cannot form a module over themselves since they lack 

multiplicative associativity, which makes them ineligible even as rings. Because of this, our established metric 

spaces and the associated conclusions are of special importance.  

4. Conclusion 

In this study, statistical convergence and completeness have been systematically examined within the 

framework of octonion-valued metric spaces. By introducing a partial order on octonions, we were able to 

extend classical notions of convergence, Cauchy sequences, and statistical density to a non-associative algebraic 

setting. The analysis has shown that every convergent sequence in an OVMS is also statistically convergent, 

and that statistical convergence naturally leads to statistical Cauchy behavior. Furthermore, it has been 

demonstrated that completeness and statistical completeness are not guaranteed properties in OVMSs but 
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instead depend on the structural characteristics of octonions. These findings provide a significant generalization 

of conventional metric space theory and emphasize the distinctive influence of non-associativity on 

convergence concepts. Beyond the theoretical framework, the results suggest potential applications in areas 

such as physics, control theory, and machine learning, where high-dimensional and non-associative structures 

frequently arise. Future investigations may focus on extending these ideas to other non-associative algebras or 

exploring concrete applications of OVMSs in modeling complex multidimensional systems. 
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