3
% V TANAGPE

% SINCE 2016
Dera Natung Government College Research Journal ISSN (Print)?ﬂ56-8228
Volume 10 Issue 1, pp. 58-78, January-December 2025 ISSN (Online): 2583-5483

Research Article
Statistical convergence within octonion metric structures

Selim Cetin? Omer Kisi® () Mehmet Gurdal®”

aDepartment of Mathematics, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
®Department of Mathematics, Bartin University, 74100, Bartmn, Turkey.
°Department of Mathematics, Suleyman Demirel University, 32260, Isparta, Turkey.

Cite as: Cetin, S., Kisi O., & Abstract: This paper investigates statistical convergence and completeness within the framework
Gurdal, M. (2025). Statistical of octonion-valued metric spaces (OVMSs). By equipping the algebra of octonions with a suitable
convergence within octonion partial order, we extend classical notions of convergence, Cauchy sequences, and statistical density
metric structures. Dera Natung to the non-associative setting of octonions. Several fundamental properties are established,
Government College Research highlighting the interaction between statistical convergence and completeness in OVMSs. Our
Journal, 10, 58-78. findings show that statistical convergence implies statistical Cauchy behaviour in these spaces, and

https://doi.org/10.56405/dngcrj.  conditions under which statistical completeness is achieved are clarified. The study not only

2025.10.01.04 generalizes conventional metric spaces but also reveals the structural impact of octonions' non-
Received on: 12.09.2025, associativity on convergence theory. Potential implications for both pure mathematics and applied
Revised on: 30.10.2025 areas such as physics, control theory, and artificial intelligence are discussed.

Accepted on: 31.10.2025,
Published on: 30.12.2025

*Corresponding Author:
Mehmet Girdal MSC 2020: 40A05, 11B05, 11N0O5, 11A99
(gurdalmehmet@sdu.edu.tr)

Keywords: Statistical convergence, octonion metric spaces, Cauchy sequences, non-associative
algebras.

1. Introduction
Following Hamilton's seminal 1843 discovery of quaternions, Graves formulated octonions, an extension of

higher-dimensional number systems. Later, Arthur Cayley independently refined and advanced the concept.
This progression, from real numbers through complex numbers and quaternions to octonions, constitutes a
structured growth of hypercomplex number systems, governed by the Cayley-Dickson process. The method
gradually expands the dimension, beginning with real numbers in one dimension, advancing to complex
numbers in two dimensions, then to quaternions in four dimensions, and finally to octonions in eight
dimensions. Each step in this sequence reveals increasingly intricate algebraic structures and properties, paving

the way for novel mathematical insights and applications.
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Octonions stand out in this progression due to their distinctive mathematical characteristics. Real and
complex numbers satisfy commutativity, while quaternions break this property but remain associative.
Octonions, however, deviate significantly from this pattern, exhibiting neither commutativity nor associativity.
Their non-associative nature implies that the order of grouping terms affects the result of multiplication, as seen
in (ab)c # a(bc). This deviation, while precluding them from fitting into standard algebraic frameworks,
places them within the broader category of alternative algebras. These algebras adhere to weaker forms of
associativity, encapsulated by the Moufang identities.

The Cayley-Dickson construction, through which octonions are derived from quaternions, is fundamental to
defining their unique multiplication rules. These rules are often illustrated using the Fano plane, a diagram that
visually encodes the relationships between the basis elements of the octonion space. This representation is a
valuable tool in mathematical applications, providing a clear depiction of how the basis elements interact during
multiplication and highlighting the intricate structure and properties of octonions.

While long considered of primarily theoretical significance, the inherently non-associative algebraic
structure offers practical utility in contexts involving the interaction of high-dimensional data. As highlighted in
the work of (Kansu et al., 2020), octonionic frameworks have been employed in formulating field equations for
dyons that inherently preserve duality symmetry. These field expressions, structurally akin to Maxwell's
equations, effectively model the interplay between electric and magnetic fields. Owing to their eight-
dimensional composition, octonions serve as a natural medium for encoding intricate interdependencies

between electromagnetic components within a single formalism.

In machine learning, octonions have proven effective for handling high-dimensional data. Wu et al. (2020)
proposed deep octonion networks (DONSs), which utilize the compact algebraic structure of octonions to fuse
multi-dimensional features across neural network layers. Within this framework, octonions enable efficient data
representation and processing, with tasks like image classification demonstrating improved performance and

convergence.

Furthermore, Takahashi et al. (2021) extended the use of octonions to control systems, specifically for the
dynamic control of robot manipulators. In this context, octonion-valued neural networks capture both spatial
and temporal dynamics, with their non-associative property allowing the network to model complex multi-axis

movements necessary for precise manipulator control.
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Although octonions possess a non-commutative and non-associative nature that poses initial challenges,
these structures have facilitated innovative uses in fields such as modern theoretical physics, control systems,

and artificial intelligence, where managing adaptive representations and multi-dimensional data is crucial.

For in-depth information on octonions, their subalgebraic structures, and interdisciplinary applications, one
can refer to the works by (Albert, 1934; Baez, 2001; Conway and Smith, 2005; Dray and Manogue, 2015;
Okubo, 1995).

The investigation of sequence convergence and summability has constituted a foundational branch of pure
mathematics, with its theoretical advancements influencing diverse domains such as applied mathematics,
computational modelling, computer science, topology, functional and Fourier analysis, and measure theory.
Among various convergence notions, statistical convergence has garnered growing attention in recent decades.
Originally introduced by Fast (1951), this concept has since undergone extensive development, with numerous
researchers exploring its theoretical implications and practical applications across multiple mathematical
disciplines. Recently, several authors have investigated various aspects of statistical convergence and its
generalizations in different settings (see, e.g., (Belen & Mohiuddine, 2013; Mohiuddine, 2016; Mohiuddine
& Alamri, 2019; Mursaleen & Mohiuddine, 2014)). These studies provide significant motivation for
extending the notion of convergence to more generalized algebraic structures such as octonion-valued metric

spaces.

In particular, Abazari (2022) defined statistically convergent sequences according to metrics on
generalised metric spaces and investigated the fundamental properties of this form of statistical convergence.
Giirdal and Sahiner (2012) contributed by introducing statistical convergence concepts for sequences in 2-
Banach spaces, statistical convergence and order for linear operators and elements, conditions for the statistical
convergence and stability of linear operators, and some applications. Giirdal and Yamanci (2015) focused on
the relationship between statistical convergence and Berezin symbols to solve some problems in operator
theory. Li et al. (2015) introduced statistical convergence in conic metric spaces, discussed statistically ordered
compact spaces, and investigated their behaviour. Savas et al. (2022) investigated the behaviour of statistically
convergent sequences for fuzzy variables in the credibility space, while Nabiev et al. (2019) introduced
statistically localised sequences in metric spaces and studied their fundamental properties, and Yamanci and
Gurdal (2016) proposed the concept of discrete statistical Borel convergence, providing characterisations of
Schatten--von Neumann class operators via Berezin symbols. Later on it was further investigated rom the
sequence space point of view and linked with summability theory by Aral et al. (2024), Giirdal and Kisi
(2024), Indumathi et al. (2023), Kisi (2023), Kolanc1 and Giirdal (2023) and many others.
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By introducing a suitable partial order on the algebra of octonions, this study develops and formalizes key
analytical concepts adapted to this non-associative setting, including statistical convergence, statistical Cauchy
sequences, and the notion of statistical density for subsequences. These concepts are generalized within the
framework of octonion-valued metric spaces (hereafter referred to as OVMSs), allowing us to explore their
properties and the connections between them. This study is also motivated by prior work such as Cetin et al.
(2025) and Kisi et al. (2025) which examined convergence and ideal convergence in octonion-valued settings.
Moreover, we explore the impact of octonions' non-associative nature on statistical convergence and related
sequence properties. This includes investigations into statistical Cauchy sequences and the characteristics of
statistically dense subsequences. OVMSs extend usual metric spaces by leveraging the rich and complex
algebraic properties of octonions, which introduce a higher-dimensional and non-associative framework. Unlike
conventional vector spaces or rings, octonions lack the multiplicative associativity property, making them
particularly intriguing when applied in these defined metric spaces. The distinctive algebraic structure of
octonions offers not only an enriched perspective on convergence behavior but also introduces new

mathematical challenges and opportunities for further exploration.

2. Literature

We now turn our attention to the octonion algebra O, which constitutes a non-associative generalization of

the classical quaternion division algebra.

The construction of O proceeds by extending the quaternionic basis 1,i,j, k with additional imaginary
units, beginning with £, to form a complete eight-dimensional basis. The resulting algebraic framework,
including its multiplication rules and illustrative representations, is developed in alignment with the exposition

provided in (Fiorenza et al., 2021).
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Thus, any element x € O can be represented as:

X =0y + 0,61 + 0,e, + 0363 + 04, + 0s€5 + 06€6 + 0,67, 0, ER, wheren =0,...,7.
A standard basis for the octonion algebra O is given by the set 1, e,, e, e3, ey, es, e¢, €7, comprising one real unit
and seven distinct imaginary units. The comprehensive multiplication rules for these basis elements are
presented in the table in the study (Kisi et al., 2025; Cetin et al., 2025).

Octonions can be expressed as an ordered tuple of eight real components (o, 01, 02,03, 04, 05, 04, 07)
where addition is performed coordinate-wise and multiplication follows the rules outlined in a designated
multiplication table. The initial component o, is referred to as the real part, whereas the subsequent seven
components (o4, 05,03, 04,05, 06, 0,) Make up the imaginary part. Therefore, as previously mentioned, every
quaternion may be expressed as (oo, W),where W = (04,0,,03,04, 05,04 0,) represents the imaginary
components and o, denotes the real part. From this representation, the following properties become readily
apparent:

t 1= (0,%), WER’; 0o €ER
= (00, (01, 03,03, 04,05,06,07)); 0g, 01,02, 03,04, 05,06,07 € R

=09 + 0,81 + 05, + 033 + 0484 + 05€5 + 0ge¢ + 05€5.

We now introduce a partial ordering relation < on the octonion algebra 0, taking into account its inherent non-

associativity and non-commutativity, defined as follows.
¥ < ¥ iff Re(x) < Re(x'), Im, (x) < Im,(x"), %, € H; e = ey, e,,e3,64,€5, €, €7,
where Im, = o,;n =1,..,7.

To verify that x < ¥, it suffices that at least one of the 256 conditions---derived from all possible combination
sums between 0 to 8 is satisfied. A detailed analysis of the aforementioned 256 conditions shows that OVMSs
can be defined as a generalization of complex metric spaces, originally introduced by Azam et al. (2011), by

considering the codomain to be the field of complex numbers.

Definition 2.1. (Azam et al., 2011; Hadzic & Gajic, 1986) Given a non-empty set S. If the transformation
N::S x S +— C defined on this set meets the subsequent criteria:

o 0c<0c(st),foranys, teSand;(s,t) =0, s =t.

e 0c(s,t) =0N:(t,s)foranys,t €S.

e 0c(s5,t) < 0c(s,v)+0c(v,t)forall s,t,veS.

Then the pair (S, Q) is said to be a complex metric space.
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These are further extended to metric spaces with values in the quaternionic skew field, as described by Ahmed
et al. (2014). In this context, quaternions provide a non-commutative generalization of such metric spaces,

allowing their application within the framework of Clifford algebra analysis.

Definition 2.2. (Ahmed et al., 2014) Let S be a nonempty set. A transformation 2.:S X S +— H is said to
satisfy the following conditions if it meets the criteria listed below.

e Oy < y(s,t)foranys,t € Sand 2y(s,t) =0y & s=t,

e 0Nyu(s,t) =0Ny(t,s) foranys,t €S,

o 0y(s,t) < Qy(s,v) + Ny(v,t) forevery s, t,v € S.

In this case 2y is referred to as a metric taking values in the quaternions on the set S, and the structure

(S, 2y) is known as a quaternion-valued metric space.

Next, we introduce OVMSs, which provide a noteworthy extension of traditional metric spaces, distinguished
by their lack of commutativity and associativity.

The definitions, examples, theorems, and propositions in this section are taken from (Cetin et al., 2025;
Kisi et al., 2025).

Definition 2.3. (Cetin et al., 2025; Kisi et al., 2025) Let S be a nonempty set. A mapping 2,:S XS +— 0 is
called an octonion-valued metric on S if it satisfies the following properties:

e 0p=<0y(s t)foreverys,t € SandN,y(s,t) =0piffs=t,

e 0N,(s,t) =0,(t,s)foreverys,t €85,

e 0y(s,t) < No(s,v) +0y(v,t) forevery s, t,v €S.

If these conditions hold, then the pair (S, 2,) is called an OVMS.

Example 2.4. Let 2,:5 X S+ 0 be an octonion-valued function defined by Q,(x,x") = |og — 0g| + |01 —
o1le; + |0, — 03|e; + |03 — 03]es + |0, — 04]e, + |05 — 0l|es + |0g — 0g|eq + |0, — 07]e;  where xx € O

with
X =0y + 0,61 + 06, + 0363 + 044 + 0565 + 0ge6 + 077,
¥ =0y + 0161 + 03e, + 0363 + 0,64 + 0ces + 0ieq + 07e7;
0,0, ER; i=0,1,2,3,4,5,6,7.

Consequently, the pair (0, £2,) constitutes an OVMS.
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Here, we present an example of an octonion-valued metric constructed on a domain that does not belong

to the class of conventional numerical sets.

Example 2.5. Consider the set X = {u, v,w} consisting of three arbitrary elements. The distances between

these elements are specified as follows:

No(w,v) =0p(v,u) =3 +4e; — 6e, +4e3 + 3e, + 3es — 2e5 + €5

No(v,w) = 0p(w,v) =1+ 2e; + 3e; — 5e, — 3eq + 4e,

Do(u,w) =0o(w,u) =2+3e, +e, +e;—2e,+ 2e5 — e + 5e,

Do(u,u) =2o(w,v) = Ny(w,w) =0+ 0e; + 0e, + 0ez + 0e, + Oes + Oeg + Oes,.

Given the values
120 (u, V)1l = 10, |20 (u, W)l = 7,120 (W, V)|l = 8,

120 (u, v) + 2o (u, w)|| = V195,12, (u, v) + 2, (v,w)|| = V200,

120 (w,v) + 2o (u,w)|| =V169 = 13,
it follows from direct computation that the conditions specified in Definition 2.3 are indeed satisfied.

3. Main Results

This section introduces several definitions related to OVMSs, based on the framework established in earlier
work. The focus is on concepts such as convergent sequences, Cauchy sequences, and bounded sequences,
which have been extended through a statistical generalization of the traditional definitions. These notions are
applicable when a large portion, rather than the entirety, of the sequence's terms demonstrate properties like

convergence, Cauchy behavior, or density.

It is clear from the foregoing definitions and illustrative examples that the proposed framework generalizes
the classical concept of a metric in a natural and consistent manner, seamlessly incorporating the complex- and
quaternion-valued cases as special instances. To further elucidate the interconnections among these structures,

we now present the following propositions.

Proposition 3.1. Any metric space defined over the quaternions can be naturally embedded into an OVMS,

preserving the underlying structure.

Proposition 3.2. Each metric space defined over the complex field can be regarded as a special case of both

quaternion-valued and OVMSs.
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Proposition 3.3. Every standard metric space equipped with real-valued distances can be naturally embedded
into a complex-valued, quaternion-valued, and OVMS via the well-known algebraic inclusions among the
number systems.

Accordingly, we now move on to introduce several fundamental notions that naturally arise from the

preceding definition.

Definition 3.4. A point s € S is considered an interior point of the set A c S if there exists an octonion 0, <
r € O such that
B(s,r)={t€eS : Qy(st)<r}cA

Definition 3.5. A point s € S is defined as a limit pointof A c S if forany 0, < r € O
B(s, 1) N (A—{s}) # @.

Definition 3.6. A set O is considered open if every element of O is an interior point of 0. A subset C c S is

regarded as closed if it contains all its limit points. The family

F ={B(s,1): s€S5,00 <71}

constitutes a subbasis for the Hausdorff topology = defined on the set S.

Now, we will recall the definitions, examples, theorems, and propositions related to the concepts of
convergence within the previously defined OVMSs and these unique mathematical structures. Since the
theorems and propositions presented here will be given without proofs, interested readers can refer to (Cetin et

al., 2025) and (Kisi et al., 2025)) for the corresponding proofs.

Definition 3.7. Let s € S and let s, be a sequence in S. We say that (s,) converges to s if for every x € O with

0o < %, there exists k, € N such that for all k > k,,
0Do(Sk,S) <%,
In this case (si) is called a convergent sequence with limit point s; denoted by

Sk = s as k — oo, or simply lim s, = s.
k— oo

Theorem 3.8. Let (s;) be a sequence in the OVMS (S, 2,). If (sx) converges to a point s, € S, then any

arbitrary subsequence (s, ) also converges, and this subsequence converges to the point s.
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Corollary 3.9. In both the quaternion-valued metric space (S,y) and the complex-valued metric space

(S, 0¢), every subsequence of a convergent sequence converges to the same point.

Definition 3.10. A sequence (s;) in the octonion-valued metric space (S, 2,) is called a Cauchy sequence if for

every x € O with 0, < x, there exists k, € N such that
00 (Sksm,Sk) < xforall k > ky and m € N.

If every Cauchy sequence in (S, 2,) converges to a point in S, then the space (S, 2,) is said to be complete,

and (S, 0,) is referred to as a complete octonion-valued metric space.
Note that not every OVMS must be complete. The following example of an OVMS supports this.

Example 3.11. Let 2, : N x N* — 0 be an octonion-valued function defined by

1 1 2 2
otnm) ==+ [ =5

3 3
el+|___
n m

4 4
€2+|———
n-m

5 5
€3+|———
n - m

6 6

€4+|___
n m

7 7

€5+|___
n m

8 8
€6+|———
n m

€7

where n,m € N*. Then (N7, 2,) defines an octonion-valued metric space. Nevertheless, due to the fact that 0
is not an element of the set of positive natural numbers N, the space in question does not satisfy the

completeness property.

Theorem 3.12. If (s, ) be a Cauchy sequence in the OVMS (S, 2,) has the subsequence (s ) converges to the

point s,, then Cauchy sequence (s;) also converges, and this Cauchy sequence converges to the point s,.

Corollary 3.13. In both the quaternion-valued metric space (S,2y) and the complex-valued metric space
(S, 2c), if an arbitrary Cauchy sequence has convergent subsequence, then the Cauchy sequence converges to

the same point.

Definition 3.14. A sequence (si) inan OVMS (S, £2,) is said to be statistically convergent to a point s € S,

stg
Sk = S,

if for every 0, < z, the following condition holds:
Al]j__r;r(}ol{k < N:Qy(si,s) <z} =0.
In this formulation, the quantity
l[{k < N:2y(sp, s) <z}
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counts the number of terms in the sequence for which the octonion-valued "distance™ to the point s does not fall
strictly below the bound x with respect to the partial order defined in Definition 2.3. The statistical convergence
criterion requires that the density of such indices tends to zero, i.e.,

{k < N:02,(sy,s) < z}|
ﬁ
N
as N — 0. This condition is necessary for the sequence (s;) to be statistically convergent to the point s in the

OVMS.

0

In classical convergence, for all 0, < x € O, there exists N € N such that for k > N, 2,(si,s) < %
holds. In statistical convergence, 2, (s, s) < x must hold only for the majority of the terms in the sequence;

some terms are allowed to be far from s.

Statistical convergence is a generalized version of the classical convergence concept, indicating that the
majority of the terms in a sequence converge to a point. This concept can be considered a weaker form of

classical convergence.

Example 3.15. Let S be a nonempty set and let (s;) be a sequence in S defined via an octonion-valued metric

1, . Define the sequence elements through the function f: N — S as follows:

__(sg,if k =n3for somen €N,
fl) = 51 = {52, otherwise.
Here, the exceptional set A = {k : k = n3for some n € N} c N. The asymptotic (natural) density of A is
given by
|An{1,2,...,N}| 1

N T N2/
and since Alllm # = 0, the set of indices has density zero. Therefore, the sequence (si) is statistically
convergent, and its statistical limit is s,; that is,

stg
Sk — S,.

Theorem 3.16. In any OVMS (S, 2,), every convergent sequence is also statistically convergent with respect to

the same limit point.

Proof. According to the notion of convergence given in Definition 3.7, for every x € O with 0, < x, there exists

an index k, € N such that for all k¥ > k,, the inequality
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Do(Sk,S) <x

holds. Consequently, the number of terms that fail to satisfy this condition must be finite. Since the asymptotic
density of any finite subset of the natural numbers is zero, it follows from Definition 3.14 that the sequence is

statistically convergent.

Statistical convergence, unlike standard convergence, requires that the majority of the terms, rather than
all of them, are close to s. This concept is particularly significant in the analysis of large data sets and complex

structures.
Theorem 3.17. Given an OVMS (S, 2,) and a sequence (s) in this space, a necessary and sufficient condition
for the sequence (s;) to converge statistically to s is
stg
120 (sie, )l = 0
as k — oo,

Proof. Let the sequence (s;) statistical converge to point s. Given a real number £ > 0, suppose that

&

&
+e .
22 T 2\2

0 + eg

& & & & & &
= +e +e +e +e +e
22 vz Pv2 a2 tavz o a2
From the definition of statistical convergence, for V0, < ' € 0, we have
1 '
I\II%NI{ksN . No(sp,s) £} =0.
In this case, specially for 0, < x € 0 and there exists
1 1
I\II%NI{k <N : Quy(sp,s) 4z} = 1\l/l-r>roloﬁ|{k <N 120G = |zl = €} = 0.
Thus, we obtain

1
ﬂr&oﬁl{k <N QoG < llzll = €} = 1.

stg
Hence, |20 (sk, s)I| = 0ask — oo.
stg . . .
On the other hand, suppose that [|2, (s, s)|| = 0as k — oo. In this case, for a given x € 0 with 0, < x,
there exists a real number § > 0, such that for any x" € 0, the following holds:

| <6=>% <=

For this &, we find
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1 1
lim Sl <N 120 (sp Il = ldll =& = 8 = €13 = lim 1 SN i Qo(sis) £ 3 = 0.}]

This leads to

1
Imloﬁl{k <N :[2o(sp I < lxll = €} = 1.
which implies

lim —I{k <N : 0o(s,s) £x} =0.

N—>oo

Hence, the sequence (s;) converges statistically to point s.

stg stg . . .
Theorem 3.18. Let (s;) be a sequence in the OVMS (S, 2,). Let both s, — s, and s;; = t, hold in this metric

space. In that case, s, = t,.

stg stg . . . I .
Proof. Assume that s, — s, and s, — t,. In connection with this, and by the definition of statistical

convergence provided in Definition 3.14, for any € > 0 and for every x € O with 0, < %, consider the case

where

&

\/_

& & & & & &
= +e +e +e +e +e +e +e
W2 ez a2 a2 sz a2 64\/_ ¢

The following equalities hold:

1
I\II%NI{kSN . Do(sSp,S0) €%} =0,

and

11m Nl{k <N : Qo(sp,ty) £33 =0.

By applying the triangle inequality (the third axiom) of the OVMS, we deduce that

0o < N2p(So,to) < (S0, Sk) + 20 (Sk, to),
and as a result,

llm N l{k <N : 0Qy(sk, So) + 2o(sk, to) ¥z} =0.

By the partial ordering property, it follows that

0 < 1120 (so, t) Il < 1020 (S0, 51) + 20 (Sks to) I < 11920 (S0, i)l + 1120 (s, L)l < €.
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From this, we conclude that |[2, (so, to)|l = 0, which implies 2, (so, ty) = 0,. Finally, invoking the first axiom
of the octonion-valued metric space, we conclude that s, = t,. This establishes the desired result and completes
the proof.

Proposition 3.19. In both cases the quaternion-valued metric space (S,{2y) and the complex-valued metric

space (S, 2.), the statistical limit is unique.

Definition 3.20. Consider a sequence (s;) in the framework of an OVMS (S, 2,). For a sequence (s;), a

subsequence (sy,,) is called a statistical cluster subsequence if:

V0 < x € 0 such that lim sup%“n < N:0y(sg,,s) £x}| = 0.

t
Theorem 3.21. Let (s;) and (t;) be two sequences in the OVMS (S, 2,). If t; = s, and 2, (sk,s) < Qo (tg, )

stg
foreachk € N, thens, — s.

stg
Proof. Since t;, — s, it follows from Theorem 3.17 that

120 () 5 0 as k- oo.
For each 0, < x € 0 and k € N, we observe that
{k<N : Qo(ty,s)<x}S{k<N : Qy(s5) <%}
Thus,

1 1
1=1\l]1£130N|{kSN 2 o (ty,s) <z} S;\l/lg}oﬁl{kSN . 0o (s, s) < x}.
Since the asymptotic density can be at most 1, by Definition 3.14, for all 0, < x, we have

1
1\1/1_r)roloﬁl{k <N : 0Qu(s,s) 4x} =0.
stg
Consequently, s, — s.
Definition 3.22. (Li et al., 2015) A subsequence (s, ) of a sequence (sy) is statistically dense in (s) if the

index set {k,, :n € N} is a statistically dense subset of N, in other words,

1
limﬁl{anN : ne€N}| =1.

N—oo
Theorem 3.23. In an OVMS (S, Q,), let (s) be an arbitrary sequence. In this case, the following conditions
are equivalent:
1) The sequence (sy) is statistically convergent in the octonion-valued space (S, 2,).

2) There exists a sequence (t) in S that converges such that s, = ¢, for almost all k € N.
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3) The sequence (s,) contains a statistically dense subsequence (s, ), which is a convergent sequence.

4) The sequence (si) contains a statistically dense subsequence (sy,), which is statistically convergent.
Sl’g oL
Proof. (1) = (2). Assume that s, — s. By Definition 3.14, for all 0, < x, we have
o1
I\lll_r)rc}oﬁl{k <N : 0o(s,s) £x} =0.

Specially, let ||x'|| = 1 for a chosen element ' € 0. Then

!

1 x
Alll_r)gloﬁ {kSN : Qo(sk,s)<§}‘=1.

This implies that there exists N; € N such that

hmlHk<N:.Q@ s)<f}|>1—l

N—eo N U7 = o e 3 3

for every N > N;. A sequence (N,,) of natural numbers can be chosen so that
1 x' 1
I\III—IEON {ZSN : 'QO(SIIS)<3_n} >1_3_n

is satisfied whenever for all N > N,,. Suppose that N,, < N,,,., for each n € N. Let t; be defined as
Sy, 1<I<N,,

!

X
tr =145, N, <1< N,q1,20(s,5) < 30
s, otherwise.
Given 0, < x € 0, choose n € N such that ;—7'1 < o0. Then, Q,(t;,s) <z for all [ > N, indicating that the

sequence (t;) converges to s.

Forall 0, < x € O, there existsn € N With;—n <o.LetNEeN.IfN, <N < N,,q, then

!

X
{lSN : tlisl}C{l,Z,,N}—{lSN . .Qo(sl,S)<3—n},

SO

1 1 X 1
Nl{lSN . tlisl}lﬁl—ﬁl{lSN . ..QO(SI,S)<3—n}|<3—n<”£”.

Therefore Allim %I{l <N : t;# s;}| =0.Hences; = t; for almost every [ € N.

(2) = (3). Assume that (t,) is a convergent sequence in S with s, =t; for almost every k € N. In this
situation, Al]im %I{l <N : t;# s} =0.If we take (tx) = (s,), in this situation, from Definition 3.7 and

Definition 3.22, (t;) is both a convergent sequence and a statistically dense subsequence of (sy).
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(3) = (4) If we take (tx) = (si,) as a subsequence, it can be directly seen from the definition of a statistically

dense subsequence (Definition 3.22) and the definition of statistical convergence (Definition 3.14).

(4) = (1). Assume that there exists a statistically dense subsequence (si,) of the sequence (s,) with the
sequence (sy,) Is statistically convergent. By the definition of statistical convergence, we have for all 0, < x,

we have
1
&E&NH"” <N : 0Qy(sy,,s) 4z} =0.
and let

stg
Sk, — S as n — oo,
n

It follows that

1
lim Nl{kn <N : 0ok, s) < x}| =1.

N—->oo

Because it happens that for each 0, < 0 € 0,
{kn €N : 0p(sy,,s) <xyc{k€N : 0p(s5) <1},

and

1 1
lim Nl{k <N ¢ Do(s,s) <z} = lim N|{kn <N : 0Q(sy,,s) <z} =1

N—-oo

We have

stg
Sk = S as k — oo,

Corollary 3.24. In the OVMS (S, ,), every statistically convergent sequence admits a subsequence that

converges in the usual sense within the same space.

Definition 3.25. A sequence (si) in an OVMS (S, 2,) is called a statistical Cauchy sequence if, for every x €

0 with 0, < %, there exists an index [ € N* (possibly depending on the norm of x) such that

lim %Hkn <N : 0p(sk,s) £ f| = 0.

N>
If we carefully examine this definition,
{k, <N : 0Qy(sk,s) # z}|
represents the number of terms in the sequence (si) in S whose octonion value, indicating the distance between
the elements of the sequence, does not precede x according to the partial ordering relation given in Definition
2.3. The ratio of these terms to the total number of terms N must approach zero as N — oo. In other words,

l{ky, <N @ 0o(Sk S1) % x}]
N -0
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as N — oo. This is a necessary condition for the sequence to be statistically Cauchy.

In accustomed definition Cauchy sequence, for every 0, <x € O, we have N € N with as k,l > N,
0o (sk, 1) < x satisfies. In statistical Cauchy sequence, 2, (sk, s;) < x must satisfy only for the majority of the

terms in the sequence; it is acceptable for the distances between some terms to follow after x.

The concept of a statistical Cauchy sequence is a generalized version of the classical Cauchy sequence
and can be understood as a sequence where the distances between the majority of its terms precede x in the
ordering.

Theorem 3.26. Let (S, 2,) be an OVMS, and let (s;) be a sequence in S. Then (s;) is a statistical Cauchy
sequence iff
stg
126 (s, Skam) 1l = 0

as k — oo, where the convergence is in the statistical sense.

Proof. We assume that (s;) is a statistically Cauchy sequence in S. From Definition 3.25, as for all 0, < . For

agiven x € 0, there exists an index [ € N* (possibly depending on the norm |x|) such that
1
Al]l_r)gloﬁl{k,l <N : Q(sys) 4x} =0.

As a given real number € > 0, suppose that
&

&
+e .
22 T 2\2

& & & & & &
X = +e +e +e +e +e +e
W2 22 fav2 o vz favz o TCayz °

1
1\1/1_r)roloﬁl{k,l <N : Qy(sys) %=}
1
= I\II%NI{k,l <N :2e(sp sl = Izl = €3l = 0.
In this context, it follows from Theorem 3.17 and Definition 3.14 that

stg
120 (s, s)Il = 0 as k — oo.

Stg . )
On the other hand, we assume that |2, (s, Sk+m) |l < x|l = 0 as k - oo. So, given x € 0 with 0, < x, there

is a real number § > 0 such that as ' € 0,

1
I\IIij{)loNI{k <N 20 (Seo Skam)ll Z Izl = £ = 6 = [IZ']1}]

1
= lim N l{k <N : Qy(sk, Sk+m) ¥ %'} = 0.

N—>oo
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Corresponding to this &, there exists [ € N* depending on the norm of x € 0, so, we get
1
lim |tk <N :[2 (s, s)ll < llzll = e} = 1.
N—ooo N
This implies that
o1
I\lll_r)rc}oﬁl{k <N : 0o(s,s) £x} =0.
Hence the sequence (s;) is statistical Cauchy sequence. Thus, the proof is complete.
Theorem 3.27. In an OVMS, statistical convergence of a sequence implies that the sequence is statistical
Cauchy.

) stg )
Proof. Let (s;) be a sequence in the OVMS (S, 2,), and suppose that s, — s. Then, for every x € O with 0, <

x, the following holds:

1
lim Nl{k <N : 0Qy(s,s) 4x} =0.

N—->oo

Additionally, by the independence of the representation of statistical convergence and by its definition, for

every 0, < x, there exists a K € N such that when k, 1 > K, and given the partial ordering definition above and

the fact that 0, < £’ € 0, it follows for the octonion 35;’that 0p < %’ € 0. Furthermore,

lim ~|lk<n : 0 |
lim Shk=N : Qo(sk,s) £ = =0.
and
lim ~|lk<n : 0 A | B
Jim < : No(sy,5) (=0
hold.

Thus, for indices k, L > K, it follows from the triangle inequality (the third axiom) of the OVMS that:
‘QO (Skl Sl) < .Qo (Sk, S) + ‘QO(S’ Sl) = fly
so foreach N € N,
(k<N : 0o(sp,5) <x"}c{k,I<N : Qy(sp5s) <%},

and
1 "
Al]l_r:roloﬁl{ksN : Do(sy,s) 4%} =0.

Therefore, since 2,(sk,s;) < x" holds for every 0, <x' € 0, the sequence (s;) is a statistical Cauchy

sequence. The proof is complete.
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Proposition 3.28. In both quaternion-valued and complex-valued metric spaces, every statistically convergent
sequence is also a statistical Cauchy sequence.

Definition 3.29. If every statistically Cauchy sequence in an OVMS (S, £2,) is statistically convergent, then the

space (S, 0,) is called a statistically complete octonion-valued metric space.
Corollary 3.30. Every statistically complete OVMS is a complete.

Note that not every OVMS must be statistically complete. The following example of an OVMS supports
this.

Example 3.31. Letd, :N* x N* — 0 be an octonion valued function defined by

1y, 1f m is prime,

do(n,m) = {!20 (n, m), otherwise,
where n,m € N* and Q,(n,m) is defined as in Example 3.11. Then (N*,d,) defines an octonion valued

metric space. However, since it is 0 ¢ N*, this OVMS is not statistically complete.

A statistically dense subsequence is not necessarily statistically Cauchy. Statistical density and statistical
Cauchy-ness are distinct concepts, and their relationship depends on the structure of the sequence. Statistical
density implies that the sequence clusters around certain points or values, while statistical Cauchy-ness
indicates that the distances between terms of the sequence decrease in a controlled manner. However, if a
sequence has a statistically dense subsequence, then this subsequence is statistically convergent within the

sequence, and thus it is also a statistically Cauchy subsequence.

Remark 3.32. Every ring forms a module over itself, and every field forms a vector space over itself, as is
commonly known. Let's be clear, though, that octonions cannot form a module over themselves since they lack
multiplicative associativity, which makes them ineligible even as rings. Because of this, our established metric

spaces and the associated conclusions are of special importance.

4. Conclusion

In this study, statistical convergence and completeness have been systematically examined within the
framework of octonion-valued metric spaces. By introducing a partial order on octonions, we were able to
extend classical notions of convergence, Cauchy sequences, and statistical density to a non-associative algebraic
setting. The analysis has shown that every convergent sequence in an OVMS is also statistically convergent,
and that statistical convergence naturally leads to statistical Cauchy behavior. Furthermore, it has been

demonstrated that completeness and statistical completeness are not guaranteed properties in OVMSs but
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instead depend on the structural characteristics of octonions. These findings provide a significant generalization
of conventional metric space theory and emphasize the distinctive influence of non-associativity on
convergence concepts. Beyond the theoretical framework, the results suggest potential applications in areas
such as physics, control theory, and machine learning, where high-dimensional and non-associative structures
frequently arise. Future investigations may focus on extending these ideas to other non-associative algebras or
exploring concrete applications of OVMSs in modeling complex multidimensional systems.
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