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Abstract: This study introduces the new concept of neutrosophic rectangular 𝑛-normed 

spaces (NR-𝑛-NS), along with essential foundational definitions. We then investigate the 

Cartesian product of such spaces and examine how this operation influences their 

structural characteristics, and demonstrate that the Cartesian product of neutrosophic 

rectangular 𝑛-normed spaces retains the same structure. Furthermore, it establishes that 

the Cartesian product of complete neutrosophic rectangular 𝑛-normed spaces is itself 

complete, and presents several auxiliary results and theorems are provided to support and 

enrich the theoretical development of these spaces. 
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1. Introduction 

In 1986, Atanassov (Atanassov, 1986) introduced the intuitionistic fuzzy set as an extension of classical 

fuzzy set theory. Building on this framework, Mohammed and Ataa (Mahammad & Ataa, 2014) later developed 

the structure of an intuitionistic fuzzy topological space and explored its characteristics. Further developments 

occurred in 2020 when Sharif and Mohammed (Sharif and Mohammed, 2020) examined bintuitionistic fuzzy 

normed spaces, offering several key properties based on earlier contributions from (Jasim & Mohammad, 2017; 

Saadati & Park, 2006). The groundwork for 2-normed and general 𝑛-normed linear spaces was initially laid by 

S. Gähler (Gähler, 1964, 1969). Building upon this, Narayan and Vijayabalaji (Narayan and Vijayabalaji, 2005) 

expanded the theory into fuzzy 𝑛-normed spaces, drawing influence from Gähler's ideas (Gähler, 1969) and the 

work of Katsaras (Katsaras, 1984). The formulation of intuitionistic fuzzy 𝑛-normed linear spaces was later 
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undertaken by Vijayabalaji et al. (Vijayabalaji et al., 2007), who also proved several foundational results. 

Independently, Branciari (Branciari, 2000) introduced the concept of rectangular metric spaces in 2000. 

Following this direction, Muteer and Mohammed (Muteer and Mohammed, 2023) proposed the notion of 

intuitionistic fuzzy rectangular b-normed spaces. Most recently, Badr and Mohammed (Badr and Mohammed, 

2024) presented the idea of fuzzy rectangular 𝑛-normed spaces and analyzed some of their significant features. 

Neutrosophic normed spaces, grounded in Smarandache’s neutrosophic logic (Smarandache, 2005), have 

been widely studied for their ability to represent uncertainty via truth, indeterminacy, and falsity components. 

(Khan and Khan, 2022) extended classical normed space concepts into the neutrosophic setting using 

continuous 𝑡-norms and 𝑡-conorms, while Jenifer et al. (Jenifer et al., 2025) investigated statistical convergence 

in such spaces. Recent studies have expanded convergence theory within neutrosophic normed structures. 

Ahmad, Savas, and Mursaleen introduced deferred 𝐼-statistical rough convergence for difference sequences in 

neutrosophic normed spaces (Ahmad et al., 2026). Hossain and Mohiuddine further developed generalized 

difference 𝐼-convergence in neutrosophic 𝑛-normed spaces (Hossain & Mohiuddine, 2025). Moreover, Hossain, 

Mohiuddine, and Granados examined 𝐼-convergence in neutrosophic 2-normed spaces, establishing refined 

criteria for neutrosophic multi-normed settings (Hossain et al., 2025). 

Separately, Mursaleen et al. (Mursaleen et al., 2009, 2010) explored convergence and sequence behavior in 

intuitionistic and fuzzy normed spaces, laying groundwork for structural generalizations. Inspired by these 

developments, Ahmad and Mursaleen (Ahmad & Mursaleen, 2025) studied on deferred statistical summability 

in neutrosophic n-normed linear space, Zarzour and Mohammed (Zarzour & Mohammed, 2025) the Cartesian 

product structure of intuitionistic fuzzy rectangular 𝑛-normed spaces and investigated its topological and 

algebraic properties. 

A central motivation of this work is the need for a more robust framework that captures uncertainty in 

higher-dimensional normed structures. Classical and intuitionistic fuzzy 𝑛-normed spaces are often insufficient 

to model systems involving truth, indeterminacy, and falsity simultaneously. To address this gap, we develop 

the notion of neutrosophic rectangular 𝑛-normed spaces (NR-𝑛-NS) and investigate their structural properties, 

including stability under Cartesian products and completeness and establish several supporting theorems. 

2. Preliminaries 

Throughout this paper, ℕ denotes the set of natural numbers and ℝ denotes the field of real numbers. 

In this section, we review some fundamental ideas and preliminaries regarding fuzzy rectangular 𝑛-normed 

space. 
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Definition 2.1.  (Badr & Mohammad, 2024) Let 𝒰 be a vector space of dimension 𝑑 ≥ 𝑛, 𝑛 ∈ ℕ (natural 

numbers). A rectangular 𝑛-norm on 𝒰 is a function ‖. , … , . ‖ on 𝒰 × 𝒰 × ⋯ × 𝒰 = 𝒰𝑛 satisfying the following 

for 𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝔣, 𝑧 ∈ 𝒰. 

(1). ‖𝜏1, 𝜏2, … , 𝜏𝑛‖ = 0 ⇔ 𝜏1 , 𝜏2 , … , 𝜏𝑛 are linearly dependent, 

(2). ‖𝜏1, 𝜏2, … , 𝜏𝑛‖ is invariant under any permutation, 

(3). ‖𝜆𝜏1 , 𝜆𝜏2 , … , 𝜆𝜏𝑛‖ = |𝜆|‖𝜏1, 𝜏2, … , 𝜏𝑛‖ for any 𝜆 ∈ ℝ, 

(4). ‖𝜏1, 𝜏2, … , 𝜏𝑛 + 𝔣 + 𝑧‖ ≤ ‖𝜏1, 𝜏2, … , 𝜏𝑛‖ + ‖𝜏1, 𝜏2, … , 𝔣‖ + ‖𝜏1, 𝜏2, … , 𝑧‖. 

‖. , . . , . ‖ is said to be a rectangular 𝑛-norm on 𝒰 and the pair (𝒰, ‖. , … , . ‖) is said to be a rectangular 𝑛-

normed space. 

Definition 2.2.  (Schweizer & Sklar, 1960) A continuous t-norm ♠ is a binary operation on the interval [0,1], 

that satisfies the following axioms: 

(1). For each 𝑒∗ ∈ [0,1] implies that 𝑒∗♠ 1 = 𝑒∗; 

(2). ♠ is associative and commutative; 

(3). ♠ is continuous, 

(4). For each 𝑒∗, 𝑠∗, 𝑧∗, 𝑑∗ ∈ [0,1] and 𝑒∗ ≤ 𝑧∗ and 𝑠∗ ≤ 𝑑∗ implies that 𝑒∗♠ 𝑠∗ ≤ 𝑧∗♠ 𝑑∗. 

Definition 2.3.  (Schweizer & Sklar, 1960) A continuous 𝑡-conorm ⊘ is a binary operation on the interval 

[0,1] which satisfies the following axioms: 

(1). For each 𝑒∗ ∈ [0,1] implies that 𝑒∗ ⊘ 0 = 𝑒∗; 

(2). ⊘ is associative and commutative; 

(3). ⊘ is continuous; 

(4). For each 𝑒∗, 𝑠∗, 𝑧∗, 𝑑∗ ∈ [0,1] and e∗ ≤ z∗ and 𝑠∗ ≤ 𝑑∗ implies that 𝑒∗ ⊘ 𝑠∗ ≤ 𝑧∗ ⊘ 𝑑∗. 

Definition 2.4.  (Zarzour & Mohammad, 2025) Let 𝒰 be a vector space, ♠ be a continuous t-norm, ⊘ be a 

continuous t-conorm, a function 𝛺, 𝑀: 𝒰𝑛 × (0, ∞) → [0, ∞] is called intuitionistic fuzzy rectangular 𝑛-norm if 

it satisfies the following for all (𝜏1, 𝜏2, … , 𝜏𝑛 , 𝔣, 𝑧) ∈ 𝒰 and 𝜍, 𝑓, 𝑎̀ > 0 : 

(1). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) + 𝑀(𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜍) ≤ 1, 

(2). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) = 0, for all 𝜍 ∈ ℝ with 𝜍 ≤ 0, 

(3). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) = 1 ⇔ 𝜏1, 𝜏2, … , 𝜏𝑛 are linearly dependent, 

(4). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) is invariant under any permutation of 𝜏1, 𝜏2, … , 𝜏𝑛, 

(5). 𝛺(𝜆𝜏1 , 𝜆𝜏2, … , 𝜆𝜏𝑛, 𝜍) = 𝛺 (𝜏1 , 𝜏2 , … , 𝜏𝑛,
𝜍

|𝜆|
), if 𝜆 ∈ ℝ ∖ 0, 

(6). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛 + 𝔣 + 𝑧, 𝜍 + 𝑓 + 𝑎̀) ≥ 𝛺(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍)♠𝛺(𝜏1 , 𝜏2 , … , 𝔣, 𝑓) ♠𝛺(𝜏1, 𝜏2 , … , 𝑧, 𝑎̀), 



M. Ahmad and M. Mursaleen              Completeness and cartesian product in neutrosophic rectangular 𝑛-normed spaces 

____________________________________________________________________________________________________________ 

25 

 

(7). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) is a non-decreasing function of 𝜍 ∈ ℝ and 

𝑙𝑖𝑚
𝜍→∞

 𝛺(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) = 1, 

(8). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) = 1, 

(9). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) = 0 ⇔ 𝜏1, 𝜏2, … , 𝜏𝑛  are linearly dependent, 

(10). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) is invariant under any permutation of 𝜏1 , 𝜏2 , … , 𝜏𝑛, 

(11). 𝑀(𝜆𝜏1, 𝜆𝜏2, … , 𝜆𝜏𝑛 , 𝜍) = 𝑀 (𝜏1, 𝜏2, … , 𝜏𝑛 ,
𝜍

|𝜆|
), if 𝜆 ∈ ℝ ∖ 0, 

(12). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛 + 𝑧, 𝜍 + 𝑓 + 𝑎̀) ≤ 𝑀(𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜍) ⊘ 𝑀(𝜏1 , 𝜏2 , … , 𝔣, 𝑓) ⊘ 𝑀(𝜏1, 𝜏2, … , 𝑧, 𝑎̀), 

(13). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) is a non-increasing function of 𝜍 ∈ ℝ and 𝑙𝑖𝑚𝜍→∞  𝑀(𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜍) = 0. 

Hence, (𝒰, Ω, 𝑀, ♠,⊘) is called an intuitionistic fuzzy rectangular 𝑛-normed space (for short, IFR-𝑛-NS). 

Example 2.5.  Let (𝒰, ‖ ⋅, … ,⋅ ‖) be a rectangular 𝑛-normed space. Define 𝑒∗♠ 𝑠∗ = 𝑒∗ ⋅ 𝑠∗ and 𝑒∗ ⊘ 𝑠∗ =

min(1, 𝑒∗ + 𝑠∗) for each 𝑒∗, 𝑠∗ ∈ [0,1]. 

Define as follows: 

Ω(𝜏1, 𝜏2, … , 𝜏𝑛, 𝜍) = 𝑒𝑥𝑝 (−
‖𝜏1 , 𝜏2, … , 𝜏𝑛‖

𝜍
), 

𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) = 1 − 𝑒𝑥𝑝 (−
‖𝜏1 , 𝜏2 , … , 𝜏𝑛‖

𝜍
), 

where 𝜍 > 0 and (𝜏1, 𝜏2, … , 𝜏𝑛) ∈ 𝒰. So (𝒰, Ω, 𝑀, ♠,⊘) is an IFR-𝑛-NS. Hence (𝑋, Ω, 𝑀, ♠,⊘) is said to be a 

standard intuitionistic fuzzy rectangular 𝑛-normed space (for short, St-IFR-𝑛-NS) induced by a rectangular 𝑛-

normed space (𝒰, ‖ ⋅, … ,⋅ ‖). 

Definition 2.6.   (Zarzour & Mohammad, 2025) Let (𝒰, 𝛺, 𝑀, ♠,⊘) be an IFR-𝑛-NS. Then: 

(i). A sequence {𝜏𝑛} in X is said to be convergent to 𝜏, if for each 𝛶 ∈ (0,1) and 𝜍 > 0 there is 𝑛0 ∈  𝑁 in 

which 

𝛺(𝜏1 , 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏, 𝜍) > 𝑙 − 𝛶 and 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏, 𝜍) < 𝛶, for all 𝑛 ≥ 𝑛0 . 

Or equivalently, 

𝑙𝑖𝑚
𝜍→∞

 𝛺(𝜏1, 𝜏2, … , 𝜏𝑛−1 , 𝜏𝑛 − 𝜏, 𝜍) = 1 and 𝑙𝑖𝑚
𝜍→∞

 𝑀(𝜏1, 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏, 𝜍) = 0. 

(ii). A sequence {𝜏𝑛} in X is said to be Cauchy if, for all each 𝛶 ∈ (0,1) and 𝜍 > 0 there is 𝑛0 ∈ 𝑁 in which 

𝛺(𝜏1, 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝐾 , 𝜍) > 𝑙 − 𝛶 and 𝑀(𝜏1, 𝜏2 , … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝜅, 𝜍) < 𝛶,for all 𝑛, 𝜅 ≥ 𝑛0. 

Or equivalently, 
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𝑙𝑖𝑚
𝜍→∞

 𝛺(𝜏1 , 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝐾, 𝜍) = 1 and 𝑙𝑖𝑚
𝜍→∞

 𝑀(𝜏1, 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝐾, 𝜍) = 0. 

(iii). An IFR-𝑛-NS(𝒰, 𝛺, 𝐻) is said to be complete if, every Cauchy sequence converges. 

 

3. Cartesian product of neutrosophic rectangular 𝑛-normed spaces 

In this section, we introduce the concept of a neutrosophic rectangular 𝑛-normed space and define the 

Cartesian product of two such spaces. We also establish and prove several related results.  

Definition 3.1.  Let 𝒰 be a vector space, ♠ be a continuous t-norm, ⊘ be a continuous t-conorm, a function 

𝛺, 𝑀: 𝒰𝑛 × (0, ∞) → [0, ∞] is called neutrosophic rectangular 𝑛-norm if it satisfying the following for all 

(𝜏1, 𝜏2, … , 𝜏𝑛, 𝔣, 𝑧) ∈ 𝒰 and 𝜍, 𝑓, 𝜖 > 0, 

(1). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) + 𝑀(𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜍) ≤ 1, 

(2). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) = 0, for all 𝜍 ∈ ℝ with 𝜍 ≤ 0, 

(3). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) = 1 ⇔ 𝜏1, 𝜏2, … , 𝜏𝑛 are linearly dependent, 

(4). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) is invariant under any permutation of 𝜏1, 𝜏2, … , 𝜏𝑛, 

(5). 𝛺(𝜆𝜏1 , 𝜆𝜏2, … , 𝜆𝜏𝑛, 𝜍) = 𝛺 (𝜏1 , 𝜏2 , … , 𝜏𝑛,
𝜍

|𝜆|
), if 𝜆 ∈ ℝ ∖ {0}, 

(6). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛 + 𝔣 + 𝑧, 𝜍 + 𝑓 + 𝑎̀) ≥ 𝛺(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍)♠𝛺(𝜏1 , 𝜏2 , … , 𝔣, 𝑓) ♠𝛺(𝜏1, 𝜏2 , … , 𝑧, 𝑎̀), 

(7). 𝛺(𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) is a non-decreasing function of 𝜍 ∈ ℝ and 

𝑙𝑖𝑚
𝜍→∞

 𝛺(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) = 1, 

(8). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) = 1, 

(9). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) = 0 ⇔ 𝜏1, 𝜏2, … , 𝜏𝑛  are linearly dependent, 

(10). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) is invariant under any permutation of 𝜏1 , 𝜏2 , … , 𝜏𝑛, 

(11). 𝑀(𝜆𝜏1, 𝜆𝜏2, … , 𝜆𝜏𝑛 , 𝜍) = 𝑀 (𝜏1, 𝜏2, … , 𝜏𝑛 ,
𝜍

|𝜆|
), if 𝜆 ∈ ℝ ∖ {0}, 

(12). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛 + 𝑧, 𝜍 + 𝑓 + 𝑎̀) ≤ 𝑀(𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜍) ⊘ 𝑀(𝜏1 , 𝜏2 , … , 𝔣, 𝑓) ⊘ 𝑀(𝜏1, 𝜏2, … , 𝑧, 𝑎̀), 

(13). 𝑀(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) is a non- increasing function of 𝜍 ∈ ℝ and 

𝑙𝑖𝑚𝜍→∞  𝑀(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) = 0. 

(14). 𝐿(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) = 1, 

(15). 𝐿(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) = 0 ⇔ 𝜏1, 𝜏2, … , 𝜏𝑛 are linearly dependent, 

(16). 𝐿(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) is invariant under any permutation of 𝜏1 , 𝜏2 , … , 𝜏𝑛, 

(17). 𝐿(𝜆𝜏1 , 𝜆𝜏2, … , 𝜆𝜏𝑛 , 𝜍) = 𝐿 (𝜏1 , 𝜏2, … , 𝜏𝑛,
𝜍

|𝜆|
), if 𝜆 ∈ ℝ ∖ {0}, 

(18). 𝐿(𝜏1 , 𝜏2 , … , 𝜏𝑛 + 𝑧, 𝜍 + 𝑓 + 𝑎̀) ≤ 𝐿(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) ⊘ 𝐿(𝜏1 , 𝜏2, … , 𝔣, 𝑓) ⊘ 𝐿(𝜏1, 𝜏2, … , 𝑧, 𝑎̀), 
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(19). 𝐿(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) is a non- increasing function of 𝜍 ∈ ℝ and 

limς→∞  𝐿(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) = 0. 

 Hence, (𝒰, 𝛺, 𝑀, 𝐿, ♠,⊘) is called a neutrosophic rectangular 𝑛-normed space (for short, NR- 𝑛-NS). 

Example 3.2.  Let (𝒰, ‖ ⋅, … ,⋅ ‖) be a rectangular 𝑛-normed space. Define the continuous 𝑡-norm ♠ and 𝑡-

conorm ⊘ on [0,1] by 

𝑒∗♠𝑠∗ = min{𝑒∗, 𝑠∗}, 𝑒∗ ⊘ 𝑠∗ = min{1, 𝑒∗ + 𝑠∗}, 

for each 𝑒∗, 𝑠∗ ∈ [0,1]. Define the functions Ω, M, L: 𝒰𝑛 × (0, ∞) → [0,1] as follows: 

Ω(𝜏1, … , 𝜏𝑛 , 𝜍) = exp (−
‖𝜏1, … , 𝜏𝑛‖

𝜍
), 

M(𝜏1, … , 𝜏𝑛, 𝜍) = 1 − exp (−
‖𝜏1 , … , 𝜏𝑛‖

𝜍
), 

L(𝜏1 , … , 𝜏𝑛, 𝜍) = 1 − exp (−
‖𝜏1 , … , 𝜏𝑛‖

𝜍
), 

where 𝜍 > 0 and (𝜏1, … , 𝜏𝑛) ∈ 𝒰𝑛. Then (𝒰, Ω, M, L, ♠,⊘) is a neutrosophic rectangular 𝑛-normed space (NR-

𝑛-NS). This example uses the exponential decay form to model the neutrosophic components, where the norm 

controls the degree of membership, indeterminacy, and non-membership. 

Note: In Definition 3.1, the mappings 

Ω, 𝑀: 𝒰𝑛 × (0, ∞) ⟶ [0, ∞] 

are allowed to take values in the extended non–negative real interval [0, ∞]. This choice is intentional and 

provides flexibility when dealing with limiting arguments in neutrosophic analysis, where indeterminacy or 

falsity components may, in principle, grow without an imposed upper bound. 

However, the behaviour of Ω and 𝑀 is fully controlled by the axioms of Definition 3.1. In particular, 

(1). Ω(⋅, 𝜍) ∈ [0,1] for all 𝜍 > 0 and Ω is non-decreasing in 𝜍; 

(2). 𝑀(⋅, 𝜍) ∈ [0,1] for all 𝜍 > 0 and 𝑀 is non-increasing in 𝜍; 

(3). Ω + 𝑀 ≤ 1. 

Thus, although the codomain is formally written as [0, ∞], the axioms force all admissible values of Ω and 𝑀 to 

lie inside the bounded interval [0,1]. Consequently, expressions such as 
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𝑀 (𝜏1 , … , 𝜏𝑛 ,
1

2
) = ∞ 

cannot occur, since they violate conditions (1), (8), and (10) of the definition. 

The inclusion of ∞ in the codomain simply allows the use of extended real analysis when handling 

limits (e.g., considering 𝜍 → ∞), but the axioms ensure that every neutrosophic rectangular 𝑛-norm actually 

attains values only in [0,1]. 

This guarantees that the structure remains compatible with neutrosophic logic and preserves the bounded 

behaviour of truth, indeterminacy, and falsity degrees. 

Definition 3.3.  Let (𝒰, Ω, M, 𝐿, ♠,⊘) be an NR-𝑛-NS. Then: 

(i). A sequence {𝜏𝑛} in X is said to be convergent to 𝜏, if for each 𝛶 ∈ (0,1) and 𝜍 > 0 there is 𝑛0 ∈  𝑁 in 

which 

𝛺(𝜏1 , 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏, 𝜍) > 𝑙 − 𝛶 and 𝑀(𝜏1 , 𝜏2 , … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏, 𝜍) < 𝛶, and 

𝐿(𝜏1 , 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏, 𝜍) < 𝛶, ∀𝑛 ≥ 𝑛0.
 

Or equivalently, 

 𝑙𝑖𝑚
𝜍→∞

 𝛺(𝜏1 , 𝜏2 , … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏, 𝜍) = 1 and 𝑙𝑖𝑚
𝜍→∞

 𝑀(𝜏1 , 𝜏2 , … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏, 𝜍) = 0, and 

 𝑙𝑖𝑚
𝜍→∞

 𝐿(𝜏1 , 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏, 𝜍) = 0.
 

(ii). A sequence {𝜏𝑛} in X is said to be Cauchy if, for all each 𝛶 ∈ (0,1) and 𝜍 > 0 there is 𝑛0 ∈ 𝑁 in which 

𝛺(𝜏1 , 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝐾 , 𝜍) > 𝑙 − 𝛶 and 𝑀(𝜏1, 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝜅 , 𝜍) < 𝛶 and 

𝐿(𝜏1, 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝜅 , 𝜍) < 𝛶,for all 𝑛, 𝜅 ≥ 𝑛0.
 

Or equivalently, 

 𝑙𝑖𝑚
𝜍→∞

 𝛺(𝜏1 , 𝜏2 , … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝐾, 𝜍) = 1 and 𝑙𝑖𝑚
𝜍→∞

 𝑀(𝜏1, 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝐾 , 𝜍) = 0 and 

 𝑙𝑖𝑚
𝜍→∞

 𝐿(𝜏1 , 𝜏2, … , 𝜏𝑛−1, 𝜏𝑛 − 𝜏𝐾, 𝜍) = 0.
 

(iii). An NR-𝑛-NS (𝒰, 𝛺, 𝑀, 𝐿) is said to be complete if, every Cauchy sequence converges. 

Definition 3.4.  Let (𝒰, 𝛺1 , 𝑀1 , 𝐿1, ♠,⊘) and (𝒰, 𝛺1 , 𝑀1 , 𝐿2, ♠,⊘) be two NR-𝑛-NS. The Cartesian product of 

(𝒰, 𝛺1 , 𝑀1 , 𝐿1, ♠,⊘) and (ℋ, 𝛺2 , 𝑀2, 𝐿2, ♠,⊘) is the product space (𝒰 × ℋ, 𝛺, 𝑀, 𝐿, ♠,⊘), where 𝒰 × ℋ is the 

Cartesian product of the sets 𝒰𝑛 × ℋ𝑛 and 𝛺, 𝑀 are a function 

𝛺: ((𝒰𝑛 × ℋ𝑛) × (0, ∞) → [0,1]), 𝑀: ((𝒰𝑛 × ℋ𝑛) × (0, ∞) → [0,1]) and 𝐿: ((𝒰𝑛 × ℋ𝑛) × (0, ∞) → [0,1]) 

are given by: 

𝛺: (𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜇1 , 𝜇2, … , 𝜇𝑛), 𝜍) = 𝛺1(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) ♠ 𝛺2(𝜇1, 𝜇2, … , 𝜇𝑛 , 𝜍) and 

𝑀: (𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜇1, 𝜇2, … , 𝜇𝑛), 𝜍) = 𝑀1(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) ⊘ 𝑀2(𝜇1 , 𝜇2, … , 𝜇𝑛, 𝜍), 
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𝐿: (𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜇1 , 𝜇2, … , 𝜇𝑛), 𝜍) = 𝐿1(𝜏1, 𝜏2, … , 𝜏𝑛, 𝜍) ⊘ 𝐿2(𝜇1 , 𝜇2, … , 𝜇𝑛, 𝜍). 

for all (𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜇1 , 𝜇2, … , 𝜇𝑛) ∈ 𝒰𝑛 × ℋ𝑛  and 𝜍 > 0. 

 

Example 3.5.  Let 𝑛 ∈ ℕ, 𝑛 ≥ 1, and let 𝒰 = ℝ, ℋ = ℝ. Consider two NR-𝑛-neutrosophic normed spaces 

(𝒰, 𝛺1 , 𝑀1 , 𝐿1, ♠,⊘) and (ℋ, 𝛺2 , 𝑀2, 𝐿2, ♠,⊘). For 𝝉 = (𝜏1 , 𝜏2 , … , 𝜏𝑛) ∈ 𝒰𝑛 and 𝜍 > 0, define 

𝛺1(𝝉, 𝜍) =
𝜍

𝜍 + ∑  𝑛
𝑖=1   |𝜏𝑖|

, 𝑀1(𝝉, 𝜍) =
∑  𝑛−1

𝑖=1   |𝜏𝑖|

𝜍 + ∑  𝑛
𝑖=1   |𝜏𝑖|

, 𝐿1(𝝉, 𝜍) =
|𝜏𝑛|

𝜍 + ∑  𝑛
𝑖=1   |𝜏𝑖|

. 

For 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑛) ∈ ℋ𝑛 and 𝜍 > 0, define 

𝛺2(𝝁, 𝜍) = 𝑒𝑥𝑝 (−
∑  𝑛

𝑖=1   |𝜇𝑖|

𝜍
) , 𝑀2(𝝁, 𝜍) =

∑  𝑛−1
𝑖=1   |𝜇𝑖+1 − 𝜇𝑖|

1 + ∑  𝑛
𝑖=1   |𝜇𝑖|

, 𝐿2(𝝁, 𝜍) = 1 − 𝛺2(𝝁, 𝜍). 

Choose the neutrosophic combination operations by 

𝑒∗♠ 𝑠∗ = min{𝑒∗, 𝑠∗}, 𝑒∗ ⊘ 𝑠∗ = max{𝑒∗, 𝑠∗}, 𝑒∗, 𝑠∗ ∈ [0,1]. 

The Cartesian product space is 

(𝒰 × ℋ, 𝛺, 𝑀, 𝐿, ♠,⊘), 

where for each (𝝉, 𝝁) ∈ 𝒰𝑛 × ℋ𝑛 and 𝜍 > 0 we set 

𝛺(𝝉, 𝝁, 𝜍) = 𝛺1(𝝉, 𝜍) ♠ 𝛺2(𝝁, 𝜍) = min {𝛺1(𝝉, 𝜍), 𝛺2(𝝁, 𝜍)}, 

𝑀(𝝉, 𝝁, 𝜍) = 𝑀1(𝝉, 𝜍) ⊘  𝑀2(𝝁, 𝜍) = max {𝑀1(𝝉, 𝜍), 𝑀2(𝝁, 𝜍)}, 

𝐿(𝝉, 𝝁, 𝜍) = 𝐿1(𝝉, 𝜍) ⊘  𝐿2(𝝁, 𝜍) = max {𝐿1(𝝉, 𝜍), 𝐿2(𝝁, 𝜍)}. 

Therefore, each of 𝛺, 𝑀, 𝐿 maps 

(𝒰𝑛 × ℋ𝑛) × (0, ∞) → [0,1], 

since 𝛺1 , 𝛺2 , 𝑀1 , 𝑀2 , 𝐿1, 𝐿2 take values in [0,1] and 𝑚𝑖𝑛, 𝑚𝑎𝑥 preserve this range. The chosen formulas are 

standard and satisfy the usual monotonicity and normalization conditions required for NR-𝑛-neutrosophic 

normed spaces; hence the Cartesian product indeed defines an NR-𝑛-neutrosophic normed space. 

Next we show that if 𝒰 and 𝒴 are NR-𝑛-NS, then their Cartesian product will also be an NR-𝑛-NS. 

Theorem 3.6.  Let (𝒰, 𝛺1 , 𝑀1 , 𝐿1, ♠,⊘) and (𝒰, 𝛺2 , 𝑀2, 𝐿2, ♠,⊘) be an NR-𝑛-NSs. Then  

(𝒰𝑛 × ℋ𝑛, 𝛺, 𝑀, 𝐿, ♠,⊘) is an NR-𝑛-NS. 

Proof. Given (𝒰, 𝛺1 , 𝑀1, 𝐿1, ♠,⊘) and (𝒰, 𝛺2 , 𝑀2, 𝐿2, ♠,⊘) are NR-𝑛-NSs. 

(1) Since 𝛺1(𝜏1, 𝜏2, … , 𝜏𝑛, 𝜍) + 𝑀1(𝜇1, 𝜇2, … , 𝜇𝑛 , 𝜍) ≤ 1 and 𝛺2(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) + 𝑀2(𝜇1, 𝜇2, … , 𝜇𝑛 , 𝜍) ≤ 1 

⇒ 𝛺((𝜏1, 𝜏2 , … , 𝜏𝑛 , 𝜇1 , 𝜇2, … , 𝜇𝑛), 𝜍) + 𝑀((𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜇1, 𝜇2, … , 𝜇𝑛), 𝜍) ≤ 1. 

(2) Since 𝛺1(𝜏1, 𝜏2, … , 𝜏𝑛, 𝜍) = 0 and 𝛺2(𝜇1 , 𝜇2, … , 𝜇𝑛, 𝜍) = 0, for all 𝜍 > 0 
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⇒ Ω((𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜇1 , 𝜇2, … , 𝜇𝑛), 𝜍) = 0. 

(3) Since 𝛺1(𝜏1, 𝜏2, … , 𝜏𝑛, 𝜍) = 1 ⇔ 𝜏1 , 𝜏2 , … , 𝜏𝑛 are linearly dependent and 𝛺2(𝜇1, 𝜇2, … , 𝜇𝑛 , 𝜍) = 1 ⇔

𝜇1 , 𝜇2, … , 𝜇𝑛 are linearly dependent ⇒ 𝛺((𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜇1, 𝜇2, … , 𝜇𝑛), 𝜍) = 1 ⇔ (𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜇1, 𝜇2, … , 𝜇𝑛) 

are linearly dependent. 

(4) Since Ω1(𝜆𝜏1 , 𝜆𝜏2, … , 𝜆𝜏n, 𝜍) = Ω1 (𝜏1, 𝜏2, … , 𝜏n,
𝜍

|𝜆|
) and Ω2(𝜆𝜇1 , 𝜆𝜇2, … , 𝜆𝜇𝑛 , 𝜍) = Ω2 (𝜇1 , 𝜇2 , … , 𝜇𝑛,

𝜍

|𝜆|
) 

⇒ Ω(𝜆(𝜏1 , 𝜏2 , … , 𝜏n, 𝜇1, 𝜇2, … , 𝜇n), 𝜍) 

= Ω1(𝜆𝜏1, 𝜆𝜏2, … , 𝜆𝜏n, 𝜍)♠Ω2(𝜆𝜇1, 𝜆𝜇2 , … , 𝜆𝜇n, 𝜍) 

= Ω1 (𝜏1 , 𝜏2, … , 𝜏n,
𝜍

|𝜆|
) ♠Ω2(𝜇1 , 𝜇2 , … , 𝜇n),

𝜍

|𝜆|
) 

= Ω ((𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜇1, 𝜇2, … , 𝜇𝑛),
𝜍

|𝜆|
). 

(5) Since Ω1(𝜏1, 𝜏2 , … , 𝜏n + 𝔣 + z, 𝜍 + 𝑓 + 𝑎̀) ≥ Ω1(𝜏1 , 𝜏2 , … , 𝜏n, 𝜍) ♠ Ω1(𝜏1, 𝜏2 , … , 𝔣, 𝑓) ♠ Ω1(𝜏1, 𝜏2 , … , z, c) and 

Ω2(𝜇1, 𝜇2 , … , 𝜇n + J + w, 𝜍 + ℝ + c) ≥ Ω2(𝜇1, 𝜇2, … , 𝜇𝑛 , 𝜍)♠Ω2(𝜇1, 𝜇2, … , J, 𝑓)♠Ω2(𝜇1, 𝜇2, … , w, c) 

⇒ Ω((𝜏1 , 𝜏2, … , 𝜏n, 𝜇1, 𝜇2 , … , 𝜇n) + (𝜏1 , 𝜏2, … , 𝑓1, 𝜇1, 𝜇2, … ,  𝒥)+(𝜏1, 𝜏2, … , z, 𝜇1 , 𝜇2, … , w), (𝜍 + 𝑓 + 𝑎̀)) 

⇒ Ω(𝜏1, 𝜏2, … , 𝜏n + 𝔣 + z, 𝜇1 , 𝜇2, … , 𝜇n + J + w, (𝜍+† +𝑎̀)) 

= Ω1(𝜏1 , 𝜏2, … , 𝜏n + 𝔣 + z, 𝜍 + 𝑓 + 𝑎̀)♠Ω2(𝜇1 , 𝜇2, … , 𝜇n + 𝒥 + w, 𝜍 + 𝑓 + 𝑎̀) 

≥ Ω1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍)♠Ω1(𝜏1, 𝜏2, … ,  f.  f )♠Ω1(𝜏1, 𝜏2, … , z, 𝑎̀)♠Ω2(𝜇1, 𝜇2, … , 𝜇𝑛, 𝜍)♠Ω2(𝜇1 , 𝜇2, … , J,

†)♠Ω2(𝜇1, 𝜇2, … , w, c) 

≥ Ω1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍)♠Ω2(𝜇1 , 𝜇2 , … , 𝜇n, 𝜍)♠Ω1(𝜏1, 𝜏2, … , 𝔣, 𝑓) ♠ Ω2(𝜇1, 𝜇2, … , J, ℝ)♠Ω1(ℵ1, ℵ2, … , z, c) 

♠Ω2(𝜇1, 𝜇2, … , w, c) 

= Ω((𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜇1 , 𝜇2, … , 𝜇𝑛), 𝜍)♠Ω((𝜏1 , 𝜏2 , … , ℎ′, 𝜇1 , 𝜇2, … , 𝛿), 𝑓)♠Ω((𝜏1 , 𝜏2, … , z, 𝜇1 , 𝜇2 , … , w), c). 

(6) Since Ω1(𝜏1, 𝜏2 , … , 𝜏n, 𝜍): (0, ∞) → [0,1] is continuous in 𝜍 and Ω2(𝜇1 , 𝜇2 , … , 𝜇𝑛, 𝜍): (0, ∞) → [0,1] is 

continuous in 𝜍 ⇒ Ω((𝜏1 , 𝜏2, … , 𝜏n, 𝜇1, 𝜇2, … , 𝜇n), 𝜍): (0, ∞) → [0,1] is continuous in 𝜍. 

(7) Since lim𝜍→∞  Ω1(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) = 1 and lim
𝜍→∞

 Ω2(𝜇1, 𝜇2, … , 𝜇𝑛 , 𝜍) = 1  

⇒ lim
𝜍→∞

 Ω((𝜏1 , 𝜏2, … , 𝜏n, 𝜇1, 𝜇2, … , 𝜇n), 𝜍) = 1. 

(8) Since M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) = 1 and M2(𝜇1, 𝜇2 , … , 𝜇n, 𝜍) = 1, for all 𝜍 > 0 

⇒  M((𝜏1, 𝜏2 , … , 𝜏𝑛 , 𝜇1 , 𝜇2, … , 𝜇𝑛), 𝜍) = 1. 

(9) Since M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) = 0 ⇔ 𝜏1, 𝜏2, … , 𝜏n are linearly dependent and M2(𝜇1 , 𝜇2, … , 𝜇n, 𝜍) = 0 ⇔

𝜇1 , 𝜇2, … , 𝜇n are linearly dependent 

⇒  M((𝜏1, 𝜏2 , … , 𝜏n, 𝜇1 , 𝜇2, … , 𝜇n), 𝜍) = 0  

⇔  (𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜇1 , 𝜇2 , … , 𝜇𝑛) are linearly dependent. 
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(10) Since M1(𝜆𝜏1 , 𝜆𝜏2 , … , 𝜆𝜏n, 𝜍) = M1 (𝜏1, 𝜏2, … , 𝜏n,
𝜍

|𝜆|
) and M2(𝜆𝜇1 , 𝜆𝜇2, … , 𝜆𝜇𝑛, 𝜍) = M2 (𝜇1 , 𝜇2, … , 𝜇𝑛,

𝜍

|𝜆|
) 

⇒ M(𝜆(𝜏1, 𝜏2, … , 𝜏n, 𝜇1 , 𝜇2 , … , 𝜇n), 𝜍) 

= M1(𝜆𝜏1 , 𝜆𝜏2, … , 𝜆𝜏n, 𝜍) ⊘ M2(𝜆𝜇1, 𝜆𝜇2 , … , 𝜆𝜇n, 𝜍)  

= M1 (𝜏1, 𝜏2, … , 𝜏n,
𝜍

|𝜆|
) ⊘ M2(𝜇1, 𝜇2, … , 𝜇n),

𝜍

|𝜆|
)  

= M ((𝜏1, 𝜏2, … , 𝜏𝑛, 𝜇1 , 𝜇2 , … , 𝜇𝑛),
𝜍

|𝜆|
). 

Since M1(𝜏1, 𝜏2, … , 𝜏n + 𝜁 + 𝑧, 𝜍 + 𝑓 + 𝑎̀) ≤ M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) ⊘ M1(𝜏1, 𝜏2, … , 𝔣, 𝑓) ⊘ M1(𝜏1, 𝜏2 , … , 𝑧,c) and 

M2(𝜇1 , 𝜇2, … , 𝜇n + J + w, 𝜍 + 𝑓 + 𝑎̀) 

≤ M2(𝜇1 , 𝜇2 , … , 𝜇n, 𝜍) ⊘ M2(𝜇1 , 𝜇2, … , J, ↑)♠Ω2(𝜇1 , 𝜇2, … , w, 𝑎̀) 

⇒ M((𝜏1 , 𝜏2, … , 𝜏n, 𝜇1, 𝜇2, … , 𝜇n) + (𝜏1 , 𝜏2 , … , 𝑓1, 𝜇1, 𝜇2, … , 𝛿)+(𝜏1, 𝜏2 , … , z, 𝜇1, 𝜇2 , … , w), (𝜍 + 𝑓 + 𝑎̀)) 

⇒ M(𝜏1 , 𝜏2, … , 𝜏n + h +z, 𝜇1 , 𝜇2 , … , 𝜇n + J + w, (𝜍 + 𝑓 + 𝑎̀)) 

= M1(𝜏1, 𝜏2 , … , 𝜏n + z, 𝜍 + 𝑓 + 𝑎̀) ⊘ M2(𝜇1 , 𝜇2 , … , 𝜇n + J + w, 𝜍 + 𝑓 + 𝑎̀) 

≤ M1(𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜍) ⊘ M1(𝜏1, 𝜏2 , … , 𝔣, 𝑓) ⊘ M1(𝜏1 , 𝜏2, … , 𝑧, 𝑎̀) ⊘ M2(𝜇1 , 𝜇2 , … , 𝜇n, 𝜍) ⊘

M2(𝜇1 , 𝜇2, … , J, 𝑓) ⊘ M2(𝜇1 , 𝜇2 , … , w, c) 

≤ M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) ⊘ M2(𝜇1 , 𝜇2 , … , 𝜇n, 𝜍) ⊘ M1(𝜏1 , 𝜏2 , … , 𝔣, 𝑓) ⊘ M2(𝜇1, 𝜇2, … , J, ℝ) ⊘ M1(ℵ1, ℵ2, … , z, c)

⊘ M2(𝜇1, 𝜇2, … , w, c) 

= M((𝜏1 , 𝜏2, … , 𝜏n, 𝜇1, 𝜇2, … , 𝜇n), 𝜍) ∨ M((𝜏1, 𝜏2, … , 𝛾1, 𝜇1, 𝜇2, … , 𝛿), 𝑓) ⊘ M((𝜏1 , 𝜏2, … , z, 𝜇1 , 𝜇2 , … , w), c). 

Since M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍): (0, ∞) → [0,1] is continuous in 𝜍 and M2(𝜇1 , 𝜇2, … , 𝜇n, 𝜍): (0, ∞) → [0,1] is 

continuous in 𝜍 ⇒ M((𝜏1, 𝜏2, … , 𝜏n, 𝜇1 , 𝜇2, … , 𝜇n), 𝜍): (0, ∞) → [0,1] is continuous in 𝜍. 

(13) Since lim𝜍→∞  M1(𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜍) = 0 and lim𝜍→∞  M2(𝜇1, 𝜇2, … , 𝜇𝑛, 𝜍) = 0 

⇒ lim𝜍→∞  M((𝜏1 , 𝜏2, … , 𝜏n, 𝜇1, 𝜇2, … , 𝜇n), 𝜍) = 0. 

(14) Since L1(𝜏1 , 𝜏2 , … , 𝜏n, 𝜍) = 1 and L2(𝜇1, 𝜇2 , … , 𝜇n, 𝜍) = 1, for all 𝜍 > 0 

⇒  L((𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜇1, 𝜇2, … , 𝜇𝑛), 𝜍) = 1. 

(15) Since L1(𝜏1 , 𝜏2 , … , 𝜏n, 𝜍) = 0 ⇔ 𝜏1, 𝜏2, … , 𝜏n are linearly dependent and L2(𝜇1 , 𝜇2, … , 𝜇n, 𝜍) = 0 ⇔

𝜇1 , 𝜇2, … , 𝜇n are linearly dependent 

= L1 (𝜏1 , 𝜏2 , … , 𝜏n,
𝜍

|𝜆|
) ⊘ L2(𝜇1 , 𝜇2, … , 𝜇n),

𝜍

|𝜆|
) 

= L ((𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜇1 , 𝜇2, … , 𝜇𝑛),
𝜍

|𝜆|
). 

Since L1(𝜏1, 𝜏2 , … , 𝜏n + 𝜁 + 𝑧, 𝜍 + 𝑓 + 𝑎̀) ≤ L1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍) ⊘ L1(𝜏1, 𝜏2, … , 𝔣, 𝑓) ⊘ L1(𝜏1 , 𝜏2 , … , 𝑧, c ) and 

L2(𝜇1, 𝜇2, … , 𝜇n + J + w, 𝜍 + 𝑓 + 𝑎̀) 
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≤ L2(𝜇1 , 𝜇2, … , 𝜇n, 𝜍) ⊘ L2(𝜇1, 𝜇2 , … , J, ↑)♠Ω2(𝜇1, 𝜇2, … , w, 𝑎̀) 

⇒ L((𝜏1, 𝜏2, … , 𝜏n, 𝜇1 , 𝜇2 , … , 𝜇n) + (𝜏1 , 𝜏2, … , 𝑓1, 𝜇1 , 𝜇2 , … , 𝛿)+(𝜏1 , 𝜏2, … , z, 𝜇1 , 𝜇2 , … , w), (𝜍 + 𝑓 + 𝑎̀)) 

⇒ L(𝜏1, 𝜏2, … , 𝜏n + h +z, 𝜇1 , 𝜇2, … , 𝜇n + J + w, (𝜍 + 𝑓 + 𝑎̀)) 

= L1(𝜏1 , 𝜏2, … , 𝜏n + z, 𝜍 + 𝑓 + 𝑎̀) ⊘ L2(𝜇1, 𝜇2, … , 𝜇n + J + w, 𝜍 + 𝑓 + 𝑎̀)  

≤ L1(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) ⊘ L1(𝜏1, 𝜏2, … , 𝔣, 𝑓) ⊘ L1(𝜏1 , 𝜏2 , … , 𝑧, 𝑎̀) ⊘ L2(𝜇1 , 𝜇2, … , 𝜇n, 𝜍) ⊘ L2(𝜇1, 𝜇2 , … , J, 𝑓) ⊘

L2(𝜇1, 𝜇2, … , w, c) 

≤ L1(𝜏1 , 𝜏2 , … , 𝜏n, 𝜍) ⊘ L2(𝜇1, 𝜇2, … , 𝜇n, 𝜍) ⊘ L1(𝜏1, 𝜏2 , … , 𝔣, 𝑓) ⊘ L2(𝜇1, 𝜇2, … , J, ℝ) ⊘ L1(ℵ1, ℵ2, … , z, c)

⊘ L2(𝜇1, 𝜇2 , … , w, c) 

= L((𝜏1, 𝜏2, … , 𝜏n, 𝜇1 , 𝜇2 , … , 𝜇n), 𝜍) ∨ L((𝜏1, 𝜏2 , … , 𝛾1 , 𝜇1 , 𝜇2, … , 𝛿), 𝑓) ⊘ L((𝜏1, 𝜏2 , … , z, 𝜇1 , 𝜇2 , … , w), c). 

Since L1(𝜏1, 𝜏2 , … , 𝜏n, 𝜍): (0, ∞) → [0,1] is continuous in 𝜍 and L2(𝜇1, 𝜇2, … , 𝜇n, 𝜍): (0, ∞) → [0,1] is 

continuous in 𝜍 

⇒ L((𝜏1, 𝜏2, … , 𝜏n, 𝜇1 , 𝜇2 , … , 𝜇n), 𝜍): (0, ∞) → [0,1] is continuous in 𝜍. 

 (17) Since lim𝜍→∞  L1(𝜏1, 𝜏2, … , 𝜏𝑛 , 𝜍) = 0 and lim𝜍→∞  L2(𝜇1, 𝜇2, … , 𝜇𝑛 , 𝜍) = 0 

⇒ lim𝜍→∞  L((𝜏1, 𝜏2, … , 𝜏n, 𝜇1 , 𝜇2 , … , 𝜇n), 𝜍) = 0. 

This completes the proof. 

Subsequently, we demonstrate that the converse of Theorem 3.6 is valid. 

Theorem 3.7.  If (𝒰n × ℋn, Ω, M, 𝐿, ♠,⊘) is an NR-𝑛-NS, then (𝒰, Ω1 , M1, L1, ♠,⊘) and (𝒰, Ω2 , M2 , L2, ♠,⊘) 

are also NR-𝑛-NSs by defining 

Ω1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) = Ω((𝜏1, 𝜏2 , … , 𝜏n, 0), 𝜍) and 

M1(𝜏1 , 𝜏2 , … , 𝜏𝑛, 𝜍) = M((𝜏1, 𝜏2 , … , 𝜏𝑛, 0), 𝜍), 

L1(𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) = L((𝜏1, 𝜏2, … , 𝜏𝑛 , 0), 𝜍), 

Ω2(𝜇1, 𝜇2 , … , 𝜇𝑛 , 𝜍) = Ω((0, 𝜇1, 𝜇2, … , 𝜇𝑛), 𝜍) and 

M2(𝜇1 , 𝜇2, … , 𝜇𝑛, 𝜍) = M((0, 𝜇1 , 𝜇2, … , 𝜇𝑛), 𝜍) 

L2(𝜇1, 𝜇2, … , 𝜇𝑛 , 𝜍) = L((0, 𝜇1 , 𝜇2 , … , 𝜇𝑛), 𝜍) 

for all 𝜏1, 𝜏2, … , 𝜏n ∈ 𝒰 and 𝜇1 , 𝜇2 , … , 𝜇n ∈ ℋ and 𝜍 > 0. 

Proof. (1) Ω1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) + M1(𝜏1 , 𝜏2 , … , 𝜏n, 𝜍) 

= Ω((𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍) + M((𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍) ≤ 1 

⇒ Ω1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) + M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) ≤ 1. 

(2) Ω1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍) = Ω((𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍) = 0 for all 𝜏1 , 𝜏2, … , 𝜏n ∈ 𝒰 
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⇒ Ω1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) = 0 and M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) = M((𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍) = 1 and L1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍) =

L((𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍) = 1 

For all 𝜏1 , 𝜏2 , … , 𝜏n ∈ 𝒰 ⇒ M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍) = 1. 

(3) For all 𝜍 > 0,1 = Ω1(𝜏1 , 𝜏2 , … , 𝜏n, 𝜍) = Ω((𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍) 

⇔ 𝜏1, 𝜏2, … , 𝜏n are linearly dependent and 0 = M1(𝜏1, 𝜏2 , … , 𝜏n, 𝜍) = M((𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍) and 0 =

L1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍) = L((𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍) 

⇔ 𝜏1, 𝜏2, … , 𝜏n are linearly dependent. 

(4) For all 𝜍 > 0,  

Ω1(𝜆𝜏1, 𝜆𝜏2 , … , 𝜆𝜏n, 𝜍) = Ω(𝜆(𝜏1, 𝜏2 , … , 𝜏n, 0), 𝜍)  

Ω ((𝜏1 , 𝜏2, … , 𝜏n, 0),
𝜍

|𝜆|
) = Ω1 (𝜏1, 𝜏2, … , 𝜏n,

𝜍

|𝜆|
) for all 𝜆 ∈ ℝ ∖ {0} and 

M1(𝜆𝜏1 , 𝜆𝜏2, … , 𝜆𝜏n, 𝜍) = M(𝜆(𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍) 

M ((𝜏1, 𝜏2, … , 𝜏n, 0),
𝜍

|𝜆|
) = M1 (𝜏1 , 𝜏2, … , 𝜏n,

𝜍

|𝜆|
) for all 𝜆 ∈ ℝ ∖ {0}.and 

L1(𝜆𝜏1, 𝜆𝜏2, … , 𝜆𝜏n, 𝜍) = L(𝜆(𝜏1 , 𝜏2, … , 𝜏n, 0), 𝜍) 

L ((𝜏1, 𝜏2 , … , 𝜏n, 0),
𝜍

|𝜆|
) = L1 (𝜏1 , 𝜏2 , … , 𝜏n,

𝜍

|𝜆|
) for all 𝜆 ∈ ℝ ∖ {0}. 

(5) For all 𝜏1 , 𝜏2 , … , 𝜏n + ∮  + z ∈ 𝒰 and 𝜍1 , 𝜍2, 𝜍3 > 0. Then Ω1(𝜏1, 𝜏2, … , 𝜏n + 𝔥 + z, (𝜍1 + 𝜍2 + 𝜍3)) 

= Ω((𝜏1, 𝜏2, … , 𝜏n + 𝜁 + 𝑧, 0), (𝜍1 + 𝜍2 + 𝜍3)) 

= Ω((𝜏1, 𝜏2, … , 𝜏n, 0) + (𝜏1 , 𝜏2, …, f, 0) + (𝜏1 , 𝜏2 , … , z, 0), (𝜍1 + 𝜍2 + 𝜍3)) 

≥ Ω((𝜏1, 𝜏2, … , 𝜏n, 0), 𝜍1)♠Ω((𝜏1 , 𝜏2, … , 𝑓, 0), 𝜍2)♠Ω((𝜏1 , 𝜏2, … , z, 0), 𝜍3) 

≥ Ω1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍1)♠Ω1(𝜏1 , 𝜏2, … , 𝜁, 𝜍2)♠Ω1(𝜏1 , 𝜏2 , … , z, 𝜍3) 

Ω1(𝜏1, 𝜏2, … , 𝜏n + 𝔥 + z, (𝜍1 + 𝜍2 + 𝜍3)) 

≥ Ω1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍1)♠Ω1(𝜏1 , 𝜏2, … , 𝑓, 𝜍2)♠Ω1(𝜏1, 𝜏2 , … , z, 𝜍3) and  

M1(𝜏1 , 𝜏2 , … , 𝜏n + 𝔥 + z, (𝜍1 + 𝜍2 + 𝜍3))  

= M((𝜏1 , 𝜏2, … , 𝜏n + 𝔥 + z, 0), (𝜍1 + 𝜍2 + 𝜍3)) 

= M((𝜏1 , 𝜏2, … , 𝜏𝑛, 0) + (𝜏1, 𝜏2 , …, f, 0) + (𝜏1, 𝜏2, … , z, 0), (𝜍1 + 𝜍2 + 𝜍3)) 

≤ M((𝜏1 , 𝜏2 , … , 𝜏𝑛, 0), 𝜍1) ⊘ M((𝜏1 , 𝜏2, … , 𝑓, 0), 𝜍2) ⊘ M((𝜏1, 𝜏2 , … , 𝑧, 0), 𝜍3) 

≤ M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍1) ⊘ M1(𝜏1 , 𝜏2, … , 𝜁2) ⊘ M1(𝜏1, 𝜏2, … , z, 𝜍3) 

M1(𝜏1 , 𝜏2 , … , 𝜏n + 𝔥 + z, (𝜍1 + 𝜍2 + 𝜍3)) 
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≤ M1(𝜏1, 𝜏2, … , 𝜏n, 𝜍1) ⊘ M1(𝜏1 , 𝜏2, … , 𝔥, 𝜍2) ⊘ M1(𝜏1, 𝜏2 , … , z, 𝜍3) and L1(𝜏1, 𝜏2, … , 𝜏n + 𝔥 + z, (𝜍1 + 𝜍2 +

𝜍3)) 

= L((𝜏1, 𝜏2, … , 𝜏n + 𝔥 + z, 0), (𝜍1 + 𝜍2 + 𝜍3)) 

= L((𝜏1, 𝜏2, … , 𝜏𝑛, 0) + (𝜏1 , 𝜏2, …, f, 0) + (𝜏1, 𝜏2 , … , z, 0), (𝜍1 + 𝜍2 + 𝜍3)) 

≤ L((𝜏1 , 𝜏2, … , 𝜏𝑛, 0), 𝜍1) ⊘ L((𝜏1, 𝜏2 , … , 𝑓, 0), 𝜍2) ⊘ L((𝜏1, 𝜏2, … , 𝑧, 0), 𝜍3) 

≤ L1(𝜏1 , 𝜏2 , … , 𝜏n, 𝜍1) ⊘ L1(𝜏1, 𝜏2 , … , 𝜁2) ⊘ L1(𝜏1, 𝜏2, … , z, 𝜍3) 

L1(𝜏1 , 𝜏2, … , 𝜏n + 𝔥 + z, (𝜍1 + 𝜍2 + 𝜍3)) ≤ L1(𝜏1 , 𝜏2 , … , 𝜏n, 𝜍1) ⊘ L1(𝜏1, 𝜏2 , … , 𝔥, 𝜍2) ⊘ L1(𝜏1, 𝜏2, … , z, 𝜍3). 

(6) Ω1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍) = Ω((𝜏1, 𝜏2, … , 𝜏n, 0)𝜍) is a continuous in 𝜍 and M1 ((𝜏1 , 𝜏2, … , 𝜏𝑛, 𝜍) =

M((𝜏1 , 𝜏2, … , 𝜏𝑛, 0), 𝜍) is a continuous in 𝜍 and L1 ((𝜏1, 𝜏2 , … , 𝜏𝑛, 𝜍) = L((𝜏1 , 𝜏2, … , 𝜏𝑛, 0), 𝜍) is a continuous in 

𝜍. 

(7) lim𝜍→∞  Ω1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍) = lim𝜍→∞  Ω((𝜏1, 𝜏2 , … , 𝜏n, 0), 𝜍) = 1 and lim𝜍→∞  M1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍) =

lim𝜍→∞  M((𝜏1 , 𝜏2, … , 𝜏n, 0), 𝜍) = 0 and lim𝜍→∞  L1(𝜏1 , 𝜏2, … , 𝜏n, 𝜍) = lim𝜍→∞  L((𝜏1 , 𝜏2, … , 𝜏n, 0), 𝜍) = 0. Then 

(𝒰, Ω1, M1, L1, ♠,⊘) is an NR-𝑛-NS. 

 

Similarly, we can prove that (𝒰, Ω2, M2, L2, ♠,⊘) is a NR-𝑛-NS. 

The following theorem establishes that if sequences in 𝒰 and ℋ are convergent, then their Cartesian product 

also converges. 

Theorem 3.8.  Let 𝜏n be a sequence in an NR-𝑛-NS (𝒰, Ω1 , M1 , L1, ♠,⊘) converging to 𝜏 in 𝒰, 𝜇n be a sequence 

in an NR-𝑛-NSs (𝑈, Ω2 , M2, L2, ♠,⊘) converging to 𝜇 in ℋ, then (𝜏𝑛, 𝜇𝑛) is a sequence in an NR-𝑛-NS (𝒰 ×

ℋ, Ω, M, 𝐿, ♠,⊘) converge to (𝜏, 𝜇) ∈ 𝒰 × ℋ. 

Proof. Let Υ ∈ (0,1) and 𝜍 > 0. Since {𝜏n} is a convergence sequence in 𝒰, there is n1 ∈  N in which 

Ω1(𝜏1, 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏, 𝜍) > 1 − Υ and M1(𝜏1 , 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏, 𝜍) < Υ and L1(𝜏1, 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏, 𝜍) <

Υ, for all n ≥ n1. 

Since {𝜇𝑛} is a convergence sequence in ℋ, there is n2 ∈ N in which Ω2(𝜇1 , 𝜇2 , … , 𝜇n − 𝜇, 𝜍) > 1 − Υ and 

M2(𝜇1 , 𝜇2, … , 𝜇n − 𝜇, 𝜍) < Υ and L2(𝜇1 , 𝜇2, … , 𝜇n − 𝜇, 𝜍) < Υ, for all n ≥ n2. 

Then, for all Υ ∈ (0,1) and 𝜍 > 0, there is n0 ∈  N, where n0 = max{n1 , n2} in which 

Ω(𝜏1, 𝜏2 , … , 𝜏n−1 , 𝜇1, 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏, 𝜇), 𝜍)  

≥ Ω1(𝜏1 , 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏, 𝜍)♠Ω2(𝜇1, 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇, 𝜍) 

> (1 − Υ)♠(1 − Υ) > 1 − Υ 

and M(𝜏1, 𝜏2 , … , 𝜏n−1 , 𝜇1, 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏, 𝜇), 𝜍) 
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≤ M1(𝜏1, 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏, 𝜍) ⊘ M2(𝜇1, 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇, 𝜍) 

< Υ ⊘ Υ < Υ  

and L(𝜏1 , 𝜏2, … , 𝜏n−1, 𝜇1, 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏, 𝜇), 𝜍) 

≤ L1(𝜏1 , 𝜏2 , … , 𝜏n−1, 𝜏n − 𝜏, 𝜍) ⊘ L2(𝜇1 , 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇, 𝜍) 

< Υ ⊘ Υ < Υ. 

Thus, {(𝜏n, 𝜇n)} converges to (𝜏, 𝜇). 

The next result confirms the validity of the converse of Theorem 3.8. 

Theorem 3.9.  Let (𝜏𝑛, 𝜇𝑛) be a sequence in an NR-𝑛-NS (𝒰 × ℋ, 𝛺, 𝑀, 𝐿, ♠,⊘), then 𝜏𝑛 is a sequence in an 

NR-𝑛-NS (𝒰, 𝛺1 , 𝑀1 , 𝐿1, ♠,⊘) converge to 𝜏 in 𝒰 and {𝜇𝑛} be a sequence in an NR-𝑛-NS(ℋ, 𝛺2 , 𝑀2 , 𝐿2, ♠,⊘) 

converge to 𝜇 in ℋ. 

Proof. The proof of this theorem follows directly and is therefore omitted. 

The upcoming theorem proves that Cauchy sequences in 𝒰 and ℋ yield a Cauchy sequence in their Cartesian 

product. 

Theorem 3.10.  Let {𝜏n} be a Cauchy sequence in an NR-𝑛-NS (𝒰, Ω1 , M1, L1, ♠,⊘) and {𝜇n} be a Cauchy 

sequence in an NR-𝑛-NS (𝑈, Ω2 , M2, L2, ♠,⊘), then {(𝜏n, 𝜇n)} is a Cauchy sequence in an NR-𝑛-NS (𝒰 ×

ℋ, Ω, M, 𝐿, ♠,⊘). 

Proof. By Theorem 3.6, (𝒰 × ℋ, Ω, M, L, ♠,⊘) is an NR-𝑛-NS. Since 𝜏n be a Cauchy sequence in an NR- 𝑛-NS 

(𝒰, Ω1, M1, L1, ♠,⊘), then for all Υ ∈ (0,1) and 𝜍 > 0, there is n1 ∈  N in which Ω1(𝜏1 , 𝜏2, … , 𝜏n − 𝜏𝜅, 𝜍) > 1 −

Υ and M1(𝜏1, 𝜏2 , … , 𝜏n − 𝜏𝜅 , 𝜍) < Υ, for all n, 𝜅 ≥ n1  and L1(𝜏1 , 𝜏2, … , 𝜏n − 𝜏𝜅, 𝜍) < Υ, for all n, 𝜅 ≥ n1. 

Since {𝜇n} be a Cauchy sequence in an NR- 𝑛-NS (ℋ, Ω2, M2, L2, ♠,⊘), then for all Υ ∈ (0,1) and 𝜍 > 0, there 

is n2 ∈  N in which Ω2(𝜇1, 𝜇2 , … , 𝜇n − 𝜇K , 𝜍) > 1 − Υ and M2(𝜇1, 𝜇2, … , 𝜇n − 𝜇K, 𝜍) < Υ, for all n, 𝜅 ≥ n2 and 

L2(𝜇1, 𝜇2, … , 𝜇n − 𝜇K, 𝜍) < Υ, for all n, 𝜅 ≥ n2. Then for all Υ ∈ (0,1) and 𝜍 > 0, there is n0 ∈  N where, n0 =

max{n1 , n2}, for all n, 𝜅 ≥ n0. 

Ω(𝜏1, 𝜏2 , … , 𝜏n−1 , 𝜇1, 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍) 

≥ Ω1(𝜏1 , 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍)♠Ω2(𝜇1 , 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇K, 𝜍) 

> (1 − Υ)♠(1 − Υ) > 1 − Υ and 

M(𝜏1 , 𝜏2, … , 𝜏n−1, 𝜇1 , 𝜇2 , … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍) 

≤ M1(𝜏1, 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍) ⊘ M2(𝜇1 , 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇K, 𝜍) 

< Υ ⊘ Υ < Υ and 

L(𝜏1, 𝜏2, … , 𝜏n−1, 𝜇1 , 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍) 

≤ L1(𝜏1 , 𝜏2 , … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍) ⊘ L2(𝜇1, 𝜇2 , … , 𝜇n−1, 𝜇n − 𝜇K, 𝜍) 
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< Υ ⊘ Υ < Υ. 

Thus, {(𝜏n, 𝜇n)} is a Cauchy sequence in (𝒰 × ℋ, Ω, M, 𝐿, ♠,⊘). 

The next theorem establishes that the converse of Theorem 3.10 also holds. 

Theorem 3.11.  If {(𝜏𝑛, 𝜇𝑛)} is a Cauchy sequence in an NR-𝑛-NS (𝒰 × ℋ, 𝛺, 𝑀, 𝐿, ♠,⊘), then {𝜏𝑛} is a 

Cauchy sequence in an NR-𝑛-NS (𝒰, 𝛺1 , 𝑀1, 𝐿1, ♠,⊘) and {𝜇𝑛} is a Cauchy sequence in an NR-𝑛-NS 

(ℋ, 𝛺2 , 𝑀2 , 𝐿2, ♠,⊘). 

Proof. Assume {(𝜏𝑛, 𝜇𝑛)} is Cauchy in (𝒰 × ℋ, Ω, 𝑀, 𝐿, ♠,⊘). Then, for every Υ ∈ (0,1) and every 𝜍 > 0 there 

exists  N ∈ ℕ such that for all 𝑛, K ≥  N, we have 

Ω(𝜏1, 𝜏2 , … , 𝜏n−1, 𝜇1 , 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍) > 1 − Υ, 

M(𝜏1, 𝜏2, … , 𝜏n−1, 𝜇1 , 𝜇2 , … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍) < Υ, 

L(𝜏1, 𝜏2 , … , 𝜏n−1, 𝜇1, 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍) < Υ. 

By the product-space definitions, we have, for each 𝑛, K and 𝜍 > 0, 

Ω(𝜏1, 𝜏2 , … , 𝜏n−1, 𝜇1, 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍)  

= Ω1(𝜏1, 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍)♠Ω2(𝜇1, 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇K , 𝜍), 

and 

M(𝜏1 , 𝜏2, … , 𝜏n−1, 𝜇1 , 𝜇2 , … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍)

= M1(𝜏1, 𝜏2 , … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍) ⊘ M2(𝜇1, 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇K , 𝜍), 

and 

L(𝜏1 , 𝜏2, … , 𝜏n−1, 𝜇1 , 𝜇2 , … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍)

= L1(𝜏1, 𝜏2 , … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍) ⊘ L2(𝜇1, 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇K, 𝜍). 

Using the assumed order-properties of ♠ and ⊘ we deduce for all 𝑛, K ≥ N: 

Ω1(𝜏1, 𝜏2 , … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍)♠Ω2(𝜇1, 𝜇2 , … , 𝜇n−1, 𝜇n − 𝜇K, 𝜍) ≤ Ω1(𝜏1 , 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍), 

so 

Ω1(𝜏1, 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏K , 𝜍) 

≥ Ω(𝜏1, 𝜏2, … , 𝜏n−1, 𝜇1 , 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍) 

> 1 − Υ. 

Similarly, 

Ω2(𝜇1, 𝜇2 , … , 𝜇n−1, 𝜇n − 𝜇K, 𝜍) 

≥ Ω(𝜏1, 𝜏2, … , 𝜏n−1, 𝜇1 , 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍) 
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> 1 − Υ. 

For the indeterminacy and falsity parts, since 𝑎 ⊘ 𝑏 ≥ 𝑎 and 𝑎 ⊘ 𝑏 ≥ 𝑏, we obtain, for all 𝑛, K ≥ N: 

M1(𝜏1 , 𝜏2 , … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍) 

≤ M1(𝜏1, 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍) ⊘ M2(𝜇1 , 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇K, 𝜍) 

= M(𝜏1 , 𝜏2, … , 𝜏n−1, 𝜇1, 𝜇2, … , 𝜇n−1, (𝜏n, 𝜇n) − (𝜏K, 𝜇K), 𝜍) 

< Υ, 

and 

M2(𝜇1 , 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇K, 𝜍) < Υ. 

Analogous inequalities hold for L1, L2: 

𝐿1(𝜇1, 𝜇2, … , 𝜇n−1, 𝜇n − 𝜇K , 𝜍) < Υ and 𝐿2(𝜇1, 𝜇2 , … , 𝜇n−1, 𝜇n − 𝜇K, 𝜍) < Υ. 

Combining the above, we see that for every Υ ∈ (0,1) and 𝜍 > 0 there exists N such that for all 𝑛, K ≥ N, 

Ω1(𝜏1, 𝜏2, … , 𝜏n−1, 𝜏n − 𝜏K , 𝜍) > 1 − Υ, and 𝑀1(𝜏1 , 𝜏2 , … , 𝜏n−1, 𝜏n − 𝜏K, 𝜍) < Υ, and 𝐿1(𝜏1, 𝜏2, … , 𝜏n−1, 𝜏n −

𝜏K, 𝜍) < Υ, and the analogous three inequalities for Ω2 , 𝑀2, 𝐿2. 

Thus {𝜏𝑛} is Cauchy in (𝒰, Ω1 , 𝑀1 , 𝐿1, ♠,⊘) and {𝜇𝑛} is Cauchy in (ℋ, Ω2, 𝑀2, 𝐿2, ♠,⊘), as required. 

Theorem 3.12.  If (𝒰, Ω1 , M1, L1, ♠,⊘) and (𝒰, Ω2 , M2 , L2, ♠,⊘) are complete an NR-𝑛-NSs, then the product 

(𝒰 × ℋ, Ω, M, 𝐿, ♠,⊘) is complete an NR-𝑛-NS. 

Proof. Let (𝜏n, 𝜇n) be a Cauchy sequence in 𝒰 × ℋ. Then, Theorem 3.11 

⇒ {𝜏n} ia a Cauchy sequence in (𝒰, Ω1 , M1 , L1, ♠,⊘) and {𝜇𝑛} is a Cauchy sequence in ( 𝑈, Ω2, M2, L2, ♠,⊘ ). 

Since 𝒰 and ℋ are complete, therefore {𝜏n} is a convergence sequence in 𝒰 and {𝜇n} is a convergence 

sequence in ℋ. 

Now, Theorem 3.8 ⇒ {(𝜏n, 𝜇n)} is a convergence sequence in 𝒰 × ℋ. 

The result below can be established using methods similar to those employed in Theorems 3.9 and 3.10. 

Theorem 3.13.  If (𝒰 × ℋ, Ω, M, 𝐿, ♠,⊘) be a complete an NR-𝑛-NS, then (𝒰, Ω1 , M1, L1, ♠,⊘) and 

(𝒰, Ω2, M2, L2, ♠,⊘) are complete an NR-n-NSs. 

Proof. Let {𝜏n} be a Cauchy sequence in 𝒰, {𝜇n} be a Cauchy sequence in ℋ. Then, Theorem 3.10 ⇒ (𝜏n, 𝜇n) is 

a Cauchy sequence in 𝒰 × ℋ. Since 𝒰 × ℋ is complete ⇒ {(𝜏n, 𝜇n)} is a convergence sequence in 𝒰 × ℋ by 

Theorem 3.9 ⇒ {𝜏n} is a convergence sequence in 𝒰 and {𝜇n} is a convergence sequence in ℋ. 
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4. Conclusion 

In this work, we introduced and systematically developed the framework of neutrosophic rectangular 𝑛-

normed spaces (NR-𝑛-NS), establishing their fundamental structure and analytical properties. 

The study showed that the Cartesian product of two NR-𝑛-NS naturally inherits the neutrosophic 

rectangular 𝑛-normed structure, thereby preserving the underlying neutrosophic behavior and geometric 

characteristics of the component spaces. Moreover, it was proved that the Cartesian product of complete NR-𝑛-

NS remains complete, ensuring the stability of convergence processes within the product environment. Several 

supporting results and theorems were obtained to strengthen the theoretical foundation of the proposed 

framework. These findings provide a robust platform for further exploration of neutrosophic functional analysis 

and open new avenues for applications involving uncertainty, indeterminacy, and multi -dimensional 

neutrosophic modeling. 

 

5. Future directions 

This research lays the groundwork for a variety of potential future studies. One direction for continued 

exploration involves extending the theory of neutrosophic rectangular 𝑛-normed spaces into operator theory 

particularly focusing on the definition and analysis of linear mappings and functionals in such frameworks. 

Another area of interest is constructing neutrosophic analogues of inner product spaces, which may yield 

valuable geometric insights. 

Further investigation could address the topological characteristics and continuity-related aspects of 

Cartesian products in neutrosophic normed environments. Topics such as compactness, connectedness, and 

convergence behavior within these structures merit deeper analysis. Moreover, applying these theoretical 

developments to practical domains involving uncertainty-such as decision science, control mechanisms, and 

data-driven modeling-could lead to impactful applications. 

Finally, identifying fixed point results, establishing criteria for completeness in more generalized 

neutrosophic settings, and incorporating probabilistic or statistical perspectives within the framework of 

rectangular 𝑛-normed spaces represent open and intriguing challenges for future research. 
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