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1. Introduction

In 1986, Atanassov (Atanassov, 1986) introduced the intuitionistic fuzzy set as an extension of classical
fuzzy set theory. Building on this framework, Mohammed and Ataa (Mahammad & Ataa, 2014) later developed
the structure of an intuitionistic fuzzy topological space and explored its characteristics. Further developments
occurred in 2020 when Sharif and Mohammed (Sharif and Mohammed, 2020) examined bintuitionistic fuzzy
normed spaces, offering several key properties based on earlier contributions from (Jasim & Mohammad, 2017;
Saadati & Park, 2006). The groundwork for 2-normed and general n-normed linear spaces was initially laid by
S. Gahler (Gahler, 1964, 1969). Building upon this, Narayan and Vijayabalaji (Narayan and Vijayabalaji, 2005)
expanded the theory into fuzzy n-normed spaces, drawing influence from Géhler's ideas (Gahler, 1969) and the

work of Katsaras (Katsaras, 1984). The formulation of intuitionistic fuzzy n-normed linear spaces was later
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undertaken by Vijayabalaji et al. (Vijayabalaji et al., 2007), who also proved several foundational results.
Independently, Branciari (Branciari, 2000) introduced the concept of rectangular metric spaces in 2000.
Following this direction, Muteer and Mohammed (Muteer and Mohammed, 2023) proposed the notion of
intuitionistic fuzzy rectangular b-normed spaces. Most recently, Badr and Mohammed (Badr and Mohammed,

2024) presented the idea of fuzzy rectangular n-normed spaces and analyzed some of their significant features.

Neutrosophic normed spaces, grounded in Smarandache’s neutrosophic logic (Smarandache, 2005), have
been widely studied for their ability to represent uncertainty via truth, indeterminacy, and falsity components.
(Khan and Khan, 2022) extended classical normed space concepts into the neutrosophic setting using
continuous t-norms and t-conorms, while Jenifer et al. (Jenifer et al., 2025) investigated statistical convergence
in such spaces. Recent studies have expanded convergence theory within neutrosophic normed structures.
Ahmad, Savas, and Mursaleen introduced deferred [-statistical rough convergence for difference sequences in
neutrosophic normed spaces (Ahmad et al., 2026). Hossain and Mohiuddine further developed generalized
difference I-convergence in neutrosophic n-normed spaces (Hossain & Mohiuddine, 2025). Moreover, Hossain,
Mohiuddine, and Granados examined I-convergence in neutrosophic 2-normed spaces, establishing refined

criteria for neutrosophic multi-normed settings (Hossain et al., 2025).

Separately, Mursaleen et al. (Mursaleen et al., 2009, 2010) explored convergence and sequence behavior in
intuitionistic and fuzzy normed spaces, laying groundwork for structural generalizations. Inspired by these
developments, Ahmad and Mursaleen (Ahmad & Mursaleen, 2025) studied on deferred statistical summability
in neutrosophic n-normed linear space, Zarzour and Mohammed (Zarzour & Mohammed, 2025) the Cartesian
product structure of intuitionistic fuzzy rectangular n-normed spaces and investigated its topological and

algebraic properties.

A central motivation of this work is the need for a more robust framework that captures uncertainty in
higher-dimensional normed structures. Classical and intuitionistic fuzzy n-normed spaces are often insufficient
to model systems involving truth, indeterminacy, and falsity simultaneously. To address this gap, we develop
the notion of neutrosophic rectangular n-normed spaces (NR-n-NS) and investigate their structural properties,

including stability under Cartesian products and completeness and establish several supporting theorems.

2. Preliminaries

Throughout this paper, N denotes the set of natural numbers and R denotes the field of real numbers.
In this section, we review some fundamental ideas and preliminaries regarding fuzzy rectangular n-normed

space.
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Definition 2.1. (Badr & Mohammad, 2024) Let U be a vector space of dimension d > n,n € N (natural
numbers). A rectangular n-norm on ‘U is a function ||., ...,. [l on U X U X --- X U = U™ satisfying the following
forty, 1y, ..., T,z € U.

Q). Ty, T2 o, Tl = 0 © 14,74, ..., T, are linearly dependent,

(2). |ty Ty, ..., T,y |l is invariant under any permutation,

(3). ATy, ATy, o, ATyl = 121|174, T2, or, Tyl fOr any 4 € R,

4). 1,1y e, Ty + T+ 2l < Ty, o) oo, Toll + 1Ty, 7o oL Tl + T, 7o) o0, 2]

I.,..,. |l is said to be a rectangular n-norm on U and the pair (4, ||.,...,.||) is said to be a rectangular n-
normed space.

Definition 2.2. (Schweizer & Sklar, 1960) A continuous t-norm # is a binary operation on the interval [0,1],
that satisfies the following axioms:

(1). Foreache* €[0,1] impliesthat e*s 1 = e*;

(2). e isassociative and commutative;

(3). & iscontinuous,

(4). Foreache* s*z*,d* €[0,1]ande* < z*and s* < d* impliesthat e*# s* < z*a d".

Definition 2.3. (Schweizer & Sklar, 1960) A continuous t-conorm @) is a binary operation on the interval
[0,1] which satisfies the following axioms:

(1). Foreache* € [0,1] impliesthate* @ 0 = e¥;

(2). (@ isassociative and commutative;

(3). @ iscontinuous;

(4). Foreache*,s* z*d" €[0,1]ande* <z*ands* < d*impliesthate* @ s* < z* @ d*.

Definition 2.4. (Zarzour & Mohammad, 2025) Let ‘U be a vector space, # be a continuous t-norm, @ be a
continuous t-conorm, a function 2, M: U™ x (0,0) — [0, o] is called intuitionistic fuzzy rectangular n-norm if
it satisfies the following for all (z4, 75, ...,7,,f,z) € U and¢, f,a > 0:

Q). 02011, 7, T, ) + M(71, T3, .., Ty, 6) < 1,

(2). 0(tq,715,...,T¢) =0, forall ¢ € Rwith ¢ < 0,

(3). 02(ty,73, ., T, ¢) =1 & 14,7y, ..., T, are linearly dependent,

4). 0(tq,73,..,Ty ¢) is invariant under any permutation of 74, 75, ..., Ty,

G). QU Aty ) AT ) = 0 (1'1,1'2, T ﬁ) if1eR\ O,

6). Q2,15 ., T +T+z,c+f+a) =011y, .., T, ¢)82(T,, Ty, ..., T, f) 802(7, 75, ..., 2,4),
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(7). Q2(tq,71y,...,T, ¢) IS anon-decreasing function of ¢ € R and

limQ(ty,75, .., Ty ¢) = 1,
g—)OO

(8). M(tqy, Ty o, Tp6) =1,
9). M(tq,79 ., T, §) = 0 © 74, Ty, ..., T, are linearly dependent,

(10).  M(tq, 1y, ..., Ty, ¢) is invariant under any permutation of 7,, 75, ..., T,
(11). M(Atq, ATy, .o, AT, 6) = M (1’1, Ty, ...,Tn,ﬁ), if1eR\O,

(12). M(ty, 79 w0, Tp+z,¢c+f+a) < M(Ty, 79, o, T §) @ M (14, T2, ..., T, f) @ M(74, 75, ..., 2, 4),
(13).  M(ty,7y, ..., Ty, §) is @ non-increasing function of ¢ € R and lim._,., M (14, T3, ..., T, ) = 0.

Hence, (U, Q, M, 4,0) is called an intuitionistic fuzzy rectangular n-normed space (for short, IFR-n-NS).

Example 2.5. Let (U,|| -, ...,- ||) be a rectangular n-normed space. Define e*4s* =¢e*-s* and e* @ s* =
min(1,e* + s*) for each e*,s* € [0,1].
Define as follows:

”T]JTZF ey Tn”)
)

Q(tq, Tz, o) Ty §) = €XP (— c

||T1FT2I !Tn”>
)

M(Tq, Ty, iy Ty §) =1 —exp (—
¢

where ¢ > 0 and (74,75, ..., T,) € U. SO (U, Q, M, 4,@) is an IFR-n-NS. Hence (X,Q, M, 4,Q) is said to be a
standard intuitionistic fuzzy rectangular n-normed space (for short, St-1FR-n-NS) induced by a rectangular n-

normed space (U, || -, ..., |

Definition 2.6. (Zarzour & Mohammad, 2025) Let (U, 2, M, ,@) be an IFR-n-NS. Then:
(i).  Asequence {t,} in X is said to be convergent to z, if for each ¥ € (0,1) and ¢ > 0 there is n, € N in
which
(11, T2 ooy Tne1, Tn — T,6) > 1 =Y and M(t1,T5, ..., Ty—1,Tp — T,6) < Y, foralln = n,.
Or equivalently,

limQ(ty, Ty ooy Tpe1, Tp — T,6¢) = Land lim M(ty, T, ..., Ty_1, Ty — T,¢) = O.
q—)OO

¢—
(ii).  Asequence {r,,} in X is said to be Cauchy if, for all each Y € (0,1) and ¢ > 0 there is ny € N in which
00T, Ty oo, T, Ty — T, §) > L =Y and M (14,75, oo, Tye1, Tn — T §) < Y for alln,k = n,.

Or equivalently,
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lim0(ty, Ty o, Tno1, Tn — Tk, §) = Land lim M(ty, Ty, ..., Ty—1,Tn — g §) = 0.
C—)w q—)oo

(iii).  AnIFR-n-NS(U, 2, H) is said to be complete if, every Cauchy sequence converges.

3. Cartesian product of neutrosophic rectangular n-normed spaces

In this section, we introduce the concept of a neutrosophic rectangular n-normed space and define the

Cartesian product of two such spaces. We also establish and prove several related results.

Definition 3.1. Let U be a vector space, # be a continuous t-norm, @ be a continuous t-conorm, a function
0,M:U™ x (0,00) = [0,00] is called neutrosophic rectangular n-norm if it satisfying the following for all
(11, T2, e, T, F,2) €U and g, f,e > 0,

(1). 21y, 1y 0T 6) + M(Tq, 79, ..., T, ¢) < 1,

(). 02(ty, 72 ., Tn6) = 0, forall ¢ € Rwith ¢ < 0,

(3). 02(ty,73, .., T, ¢) =1 & 14,7y, ..., T, are linearly dependent,

4). 0(tq,73,...,Ty ¢) is invariant under any permutation of 7y, 75, ..., Ty,

().  QUTy, ATy . AT06) = 0 (11,72, o, Ty ) i A € R\ {0},

S
1]
6). 0011, Ty ., Tp+T+z,c+f+a)=02(1,,7y ..., Ty, )82, Ty, ..., T, f) #0(14, 75, ..., 2,4),

(7). Q2(tq, 7y, ...,T4 ¢) is anon-decreasing function of ¢ € R and

limQ(ty, 75, .., Ty ¢) = 1,

¢—00
(8). M(tq, Ty ., Tp¢) =1,
(9). M(14,79 .., T, ¢) = 0 © 74, Ty, ..., T, are linearly dependent,

(10). M(tq, 7y, ..., Ty, §) is invariant under any permutation of 4, 75, ..., T,

(1), Mty ATy, 0, AT ) = M (13,3, o T ), i A € R\ {0},

£
|
(12). M(tq, 7y ., T+ z,¢+ f +a) < M(1q, Ty, s Tny§) @ M(14,75, ..., 1, ) @ M(14, 75, ..., 2,Q),
(13). M(tq, 7y, ..., Ty §) is anon- increasing function of ¢ € R and

limg_,ooM(Tl,Tz, vy Ty 6) = 0.
(14). L(tq,T9, .., T ¢) =1,
(15).  L(t4,7T2, .., T, §) = 0 © T4, Ty, ..., T, are linearly dependent,

(16).  L(tq,Ty,..., Ty, ¢) is invariant under any permutation of 7, 75, ..., Tp,
S\
w)’ if 1€ R\ {0},

(18). L(t4, 79, ., T+ 2z, ¢+ f+a) < L(t, T2 ', Ty §) @ L(t4, T2, .., T, f) @ L(t4, T, ..., 2,4),

(17). LAty Aty o) ATy, ¢) = L (Tl,rz, Th)
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(19).  L(tq,75,...,Ty ¢) is anon- increasing function of ¢ € R and
lime,o L(T1, T2, ooy Ty §) = 0.

Hence, (U, 0, M, L, 4,Q) is called a neutrosophic rectangular n-normed space (for short, NR- n-NS).

Example 3.2. Let (U,]| -, ..., ||) be a rectangular n-normed space. Define the continuous t-norm & and t-
conorm @ on [0,1] by

e*as* = min{e”,s*},e* @ s* = min{l, e* + s},
for each e*,s* € [0,1]. Define the functions Q, M, L: U™ x (0, 00) — [0,1] as follows:

71, -"'Tn”>
)

Q(tq, -, Ty, §) = €Xp (— .

”T1' Tt Tn”)
)

M(tq, ..., Tp,6) = 1 —exp (—
¢

71, ---'Tn”>
)

L(ty, ., T, 6) = 1 —exp (—
¢

where ¢ > 0 and (ty, ..., T,) € U™. Then (U, Q, M, L, 4,@) is a neutrosophic rectangular n-normed space (NR-
n-NS). This example uses the exponential decay form to model the neutrosophic components, where the norm
controls the degree of membership, indeterminacy, and non-membership.

Note: In Definition 3.1, the mappings
Q,M: U™ x (0,00) — [0, 0]

are allowed to take values in the extended non—negative real interval [0,c]. This choice is intentional and
provides flexibility when dealing with limiting arguments in neutrosophic analysis, where indeterminacy or

falsity components may, in principle, grow without an imposed upper bound.

However, the behaviour of Q and M is fully controlled by the axioms of Definition 3.1. In particular,

(1). Q(,¢) €[0,1] for all ¢ > 0 and Q is non-decreasing in ¢;

(2. M(,¢) €[0,1] forall ¢ > 0and M is non-increasing in ¢;

3. Q+M<1.

Thus, although the codomain is formally written as [0, o], the axioms force all admissible values of Q and M to

lie inside the bounded interval [0,1]. Consequently, expressions such as
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Ty e, Ty, =] =0
1 n 2

cannot occur, since they violate conditions (1), (8), and (10) of the definition.

The inclusion of oo in the codomain simply allows the use of extended real analysis when handling
limits (e.g., considering ¢ — o), but the axioms ensure that every neutrosophic rectangular n-norm actually

attains values only in [0,1].

This guarantees that the structure remains compatible with neutrosophic logic and preserves the bounded

behaviour of truth, indeterminacy, and falsity degrees.

Definition 3.3. Let (U, Q, M, L, 4,@®) be an NR-n-NS. Then:
(). Asequence {r,,} in X is said to be convergent to 7, if for each ¥ € (0,1) and ¢ > 0 there is n, € N in
which

(14, T9, oy Ty, Tn — T,6) > 1 =Y and M(t4,T5, ..., Tp_1,Tp — T,6) <Y, and
L(T1,Ty ey Tpe1, T — T,6) < Y, VN = n,,.
Or equivalently,
limQ(ty,T, o, Tpe1, Ty — T,¢) = Land lim M(t,, 75, ...,Ty—1,Tn — T,¢) = 0, and
g—)oo

¢—00

limL(ty, Ty, o, Tne1, Tn — T,¢) = 0.
g‘—)oo

(ii).  Asequence {z,,} in X is said to be Cauchy if, for all each Y € (0,1) and ¢ > 0 there is ny € N in which

0(T1, T vy Tne1y Tn — Txr§) > L =Y and M(t1, Ty, o, Tne1, Tn — T, §) < Y and
L(T1, Ty ey Tne1, Tn — Tis §) < Y for all n, k = ny,.

Or equivalently,
limQ(ty, Ty, e, T, Tn — T ) = Land lim M (14, Ty, oo, Ty—1, Tn — Tk, §) = 0 and
g—)OO g—)OO

limL(ty,T5, oo, Tpe1, Ty — T, §) = O.
C—)OO

(iii).  AnNR-n-NS (U, 2, M, L) is said to be complete if, every Cauchy sequence converges.

Definition 3.4. Let (U,2,,M;,L,,4,@®) and (U,2,,M;,L,, ,Q) be two NR-n-NS. The Cartesian product of
(U, 0,,M,, L, ,Q) and (#,02,, M,, L,, 4,Q) is the product space (U X H,2,M, L, ,Q), where U X H is the
Cartesian product of the sets U™ x H™ and £2, M are a function

Q2: (U™ x H™) x (0,00) - [0,1]), M: ((U™ x H™) x (0,00) - [0,1]) and L: ((U™ X H™) x (0,0) - [0,1])
are given by:

0Q: (T4, T ooes Try 1y My woes M), §) = (4 (T4, T2, o0, Ty §) # 25 (Ug, fha, e, s §) AN

M: (T4, T2, o) Ty Bay s +oos Hn)5 §) = My (T4, T2, o0, Tny §) @ Mo (g, ) ey s 6,
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L: (Tll TZ; )T‘n_ﬁﬂll ,le, "'i.un)) C) = Ll(le TZ: -"rTn) C) @ LZ(,“l:HZ; ---;lfln; C)
for all (T4, Ty, ..., Ty, e, Upy s ) € U X H™and ¢ > 0.

Example 3.5. Let n€ N, n>1, and let U = R, H = R. Consider two NR-n-neutrosophic normed spaces
(U, 21, My, L1, 4,@D) and (H,02,, M;, L,, 4,0). For T = (14,75, ...,T,) € U™ and ¢ > 0, define

¢ il | Tl
0,(t,¢) = Mi(t,¢) = ——=——,L1(T,¢) = —=7—7—-
10 = MmO = e o O = e
For u = (uq, py, -, ty) € H™ and ¢ > 0, define
P 7] P i — 1l
2,(n,¢) = exp (——l = |, My(6) == = =, L) =1—0(1 ).

Choose the neutrosophic combination operations by
e*4 s* = min{e*, s*},e* @ s* = max{e*,s*},e*,s* € [0,1].
The Cartesian product space is
(UXT,0,M,L,40Q0),
where for each (z, u) € U™ x H™ and ¢ > 0 we set
(T, 1 6) = 2:(T,6) & 2,(p, ) = min {2 (7,6), 2, (1, §)},

M(z, 1, 6) = Mi(T,¢) @ My(p,¢) = max {My(z,¢), M,(1, 6)},

L(t,u,¢) = Li(7,6) @ La(p,¢) = max {L;(7,¢),L2(1, )}
Therefore, each of 2, M, L maps

(UM X H™) x (0,0) = [0,1],
since 24, 2,,M;,M,, L, L, take values in [0,1] and min, max preserve this range. The chosen formulas are
standard and satisfy the usual monotonicity and normalization conditions required for NR-n-neutrosophic

normed spaces; hence the Cartesian product indeed defines an NR-n-neutrosophic normed space.
Next we show that if U and Y are NR-n-NS, then their Cartesian product will also be an NR-n-NS.

Theorem 3.6. Let (U,2,,M,,L,,,®) and (U, 2,,M,, L,, 4,@) be an NR-n-NSs. Then

(U X H™ 2, M,L,4,Q0) is an NR-n-NS.

Proof. Given (U, 2, M;, L1, 4,@®) and (U, 2,, M,, L,, 4,D) are NR-n-NSs.

(1) Since 02,(1y, 79 0y Ty §) + My (Uq, oy oo i €) < 1 and 02,(Tq,Tg, ooe, Ty §) + My (g, gy ey iy §) < 1
= .Q((Tl,’[z, vy Try U1y Uy wony M), g) + M((Tl, Ty ey Try gy My oo s ), q) <1.

(2) Since 2, (T4, T2, o) Ty §) = 0 and 2, (uy, Uy, .., iy, ¢) = 0, forall ¢ > 0
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= Q((Tl,‘fz, e Tryy e, Uz, ...,,un),g) = 0.

(3) Since 0,(t4, Ty ., Tp,¢) =1 & 14,7y, ...,T, are linearly dependent and Q,(uq, ty, ..., iy, ¢) =1 &
Ui, Uz, -, Uy are linearly dependent = .Q((Tl,l'z, ey Ty M1y Uy wee s ), g) =1 (T1,Ty ooy Ty U1y Uy oov s Hyy)
are linearly dependent.

(4) SinCe Ql (ATl,ATz, ...,ATH, g) = Ql (Tl’ Tz, ..-,Tn,ﬁ) and QZ(AI’LIJAHZI ---:Aﬂnr C) = QZ (#1':“’2' ""I’I'Tl’ ﬁ)

= Q(A’(Tll‘l‘-ZI lTnI ,u1; MZ; "'l.un); g)
= Ql (/17:1, /17:2, . ,ATn, C)QQZ (A’Ml' /1#2, . ,Aﬂn, C)

¢
) QQZ(HL Uz, - ,‘Lln), _)

¢
:‘(ll (Tl,Tz,...,Tn,m |A|

¢
=0 ((Tl,‘[z, e Ty Uy Uy oon s ,un),m)

(5) Since Q, (11,72, ., Tp + T+ 2z ¢+ f+a) = Q (11,75, o, Tn §) # Q (14,75, ..., T, f) # Q; (14,75, ..., Z,¢) and
Qo (ys iz oo tin + ]+ W, 6+ R+ ) 2 Qp (i, iz, e, s ) 202 (Wy, i, oo ], 205 (U, iz, -, W, )
> Q((‘[l,‘[z, e Toy Mgy My ooy ) + (T1, Toy eons f1r gyl ooy D)+ (T1, Ty o) Z, g, gy o, W), (6 + f + d))
= .Q(Tl,’l'z, v Ty + T+ 2 1y, oy v iy + ]+ W, (c+1 +d))
=0 (1, Ty v, Tn T+ z,c+ f+a)8Q,(uy, Uy, s tn +J + W, 6+ f+ @)
= 0y (7q, T2, s Ty )8 (Ty, To, oy 1 )8 (T4, T2, -, 2, @) 805 (g, s o) s §) 22 (g, g, o0, ],
T)eQ, (g, 1z, .., W, )
= 0 (71, T2 s Toy 20 (g, g, s 1y §) 801 (T1, To, oo, T, f) # Qo (g, g, -0, |, R) 4O (Ry, Ry, ..., 7, €)
&Q, (uq, Uy, ..., W, )
= Q((T1»T2» o Ty Uy Uo,s ---»Hn):C)*Q((TpTz» v b g, 5)»f)*9((f1'fz» s Zy g, g, ey W), C)-
(6) Since Q, (14,73, .., Ty, 6):(0,00) = [0,1] is continuous in ¢ and Q,(uy, Uz, ., tn, )i (0,00) = [0,1] is
continuous in ¢ = Q( (1, Ty, ..., Tn, ha, Uzs > ), §): (0,00) = [0,1] is continuous in .

(7) Since lim_,, Q4 (74, 73, ..., Tp, §) = 1 and Cli_)rg)ﬂz(ul,uz, e ln,6) =1

= cli_{g)ﬂ((TpTz, veer Try U, Uz, ...,un),g) = 1.

(8) Since M; (14, 5, ..., Ty, ¢) = 1 and M, (g, Uy, .., iy, ¢) = 1, forall ¢ > 0

= M((Tl,‘fz, e T 1, U, ...,,un),g) =1.

(9) Since M, (14, T3, ..., Tpy §) = 0 © T4, Ty, ..., Ty are linearly dependent and M, (uq, iy, ..., tp,¢) = 0 &
Uy, U, -, Uy are linearly dependent

= M((Tl,‘fz, vees Ty Uy ) ...,un),q) =0

S (T4, Ty ooy Ty Ue, Mo, -, Uyy) are linearly dependent.
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(10) Since M; (A1, ATy, ..., ATy, ¢) = My (Tl, Ty, oo ,Tn,ﬁ) and M, (Auq, Auy, ..., Ay, 6) = M, (/,11,,112, veer Uy ﬁ)

= M(A(Tq, Tg, vy Try M1y Uy voe s B ), §)

= M; (At4, ATy, ..., ATy, §) @ My (Apy, Ay, ..., Ay, €)

S S
= M1 (Tl, Tz, ...,Tn,m) @ Mz(lll, Hz, ...,ﬂn),m)

¢

Since My (14, Ty, e, Tn + {+ 2,6+ f + @) < M (T4, Ty, oo, Tny §) @ My (74, T3, ..., T, f) @ My (74,75, ..., 2,C) and

My (uy, o) sty +]+ w6+ f +a)

< Map(py, ) oo by §) @ Mo (g, iz, -, 1, 1) Q0 (0, 1, o, W, @)

= M((Tl,‘fz, vees Ty Uy Uy ey ) + (T4, Ty oy f10 ey Uy voey )+ (T4, Ty ey Z, e, Uy, o, W), (¢ + f + @)

= M(7y,Tg, w0, Tn + Wz, 041, g, oo tin + ] +w, (¢ + f + a))

=M; (1,72, i, Tn +Z,¢+ f+a) QO My(uy, Uy, sty + ] +wW, 6+ f +a)

< M; (14, T2, e, Ty ) @ My (T4, T, oo, T, ) @ M1 (74,75, .., Z2,a) @ My (Uy, g, oo s in, §) @

M, (g, ) oy 1, f) @ Ma(py, ) oo, W, €)

< M; (14, T2, ooy Ty §) @ Mo (q, fa) voe s iy §) @ My (T4, T2, oo, T, ) @ My (g, tz, o, J, R) @ My (Rq, Ry, ..., Z,C)
@ My (py, iz, -y W, ©)

= M((TI,TZ, cees Tryy Ugs Uy oov s Uy, g) v M((Tl, Ty eees V1o s Uy oov ) 6),f) %) M((Tl,’[z, ey Zy e, Uy ey W), c).

Since M; (74,73, .., Tp,6): (0,00) = [0,1] is continuous in ¢ and My (uq, Uy, .\ ty, 6): (0,0) = [0,1] is

continuous in ¢ = M((y, T2, -, Tn, e, Uzs -, in), §): (0, 00) = [0,1] iis continuous in g.

(13) Since lim¢_,,o My (741, T2, ..., Tp, §) = 0 and limg_, o My (pty, piz, .., iy, §) = 0

= limq_,ooM((Tl,Tz, veer Tryy Uy, U, ...,,un),c) = 0.

(14) Since Ly (14,75, ..., T, ¢) = 1 and L, (uq, iy, .., tty,¢) = 1, forall ¢ > 0

= L((Tl,Tz, ey Ty M1y Uy oon s i), g) = 1.
(15) Since Ly(74,73,...,Tn,¢) =0 & 14, 7y,..., T, are linearly dependent and L,(uq,Hy, ...,y ¢) =0 &

Uy, Ua, -, Uy are linearly dependent

¢ ¢
= L1 Tl) TZ, ""Tn'_ @ LZ(”:[;MZ; ""I’Ln);_
|4] |A]

¢
= L ((Tll TZ} ey Tn, Ml; llz, ey l,ln), m).
Since Ly (14,72, ., Tn + {+ 2,6+ f + ) < L (14,73 o, T §) @ Ly (71, T3, oo, T, f) @ Ly (14,75, ...,2, ¢ ) and

Ly (uy, gy oo tin ¥+ W6+ f + )
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< Lo(py, 2o o i §) @ Lo (piy, g, oo, 1, D #Q5 (g, g, ., W, Q)

= L((‘[l, Ty wers Tr M1y Uy voe s Un) F (T1, Ty ooy f1 Hay By ey 8)+(T1, Ty oony Z, g, oy oo, W), (6 + f 4+ @Q))

= L(1, Ty, v, Tn F W +2Z, 00, lg,y oo iy + ]+ W, (¢ + f + a))

=L,(t, 79, e, Tn +z,¢+ f+a) @ Ly(uy, gy oo iy + 1+ wW,c+ f + @)

< L;(14, T2, o, Ty ) @ Ly (74, T3, oo, T, ) @ Ly (14,7, ., 2,4) @ Lo (q, tpy ooy iy §) @ Lo (g, iz, o, J, f) @

Lo (py, 2, -, W, €)

< Li(ry, 720 0 Ty §) @ Lop(pty, o) oos s §) @ Ly (T4, T2, o, T f) @ Lap (g, phay o, L R) @ Ly (R, Ry, .., 2, €)
@ Ly(uy, pz, o, W, €)

= L((Tl, Toy ey Try M1y Uz» ...,/,tn),g) Y, L((Tl,‘fz, ey V1o e, Ua) ...,6),f) %) L((Tl,‘fz, iy Zy e, Uy ey W), c).

Since Ly (74, T3, -, Ty, §): (0,0) — [0,1] is continuous in ¢ and L, (¢q, tty, -, o, §): (0,0) = [0,1] is

continuous in ¢

= L((t4, T2 o) Tr U1, B2y ooe s ), §): (0, 00) — [0,1] is continuous in g.

(17) Since lim_0 Ly (74, T2, -, Ty §) = 0 and limg_, oo Ly (g, fg, oo, iy §) = 0

= lirnc_mL((Tl,Tz, ey Ty M1y Uy ooy ), g) = 0.

This completes the proof.
Subsequently, we demonstrate that the converse of Theorem 3.6 is valid.

Theorem 3.7. If (U™ X H™,Q,M, L, 4,@) is an NR-n-NS, then (U, Q;, M4, L1, 4,0) and (U, Q,,M,, L,, 4,0)
are also NR-n-NSs by defining

Q1 (14,79, e, Ty §) = .Q((Tl,’l'z, S ) q) and

M;(T1, T2, s Try §) = M((T1, T3, v, T, 0), ),

Li(T1, T3 oy Ty §) = L((Tl,’l'z, iy T 0),(;),

Oy (U1, s oo s §) = Q((0, i1, g, - 1), 6) aNd

My (ty, iz woes s §) = M((O, g, fz, oee, ), 6)

Lo (i1, Hoy wov s i, §) = L((O'M'ﬂz' ---;Iin)’C)

forall t,, 7y, ..., 7, € U and uq, Uy, ..., 4y € H and ¢ > 0.
Proof. (1) Q, (14, T3, ., Ty §) + My (T4, T3, oor, Ty §)

= Q((Tl,‘fz, v, Ty 0), g) + M((rl, Toy ey Tpy 0),() <1
= 0 (11, T2, 0o, Ty §) + My (T4, T3, oe, Ty, 6) < 1.

2) Q1 (11,7 s Tny §) = Q((71, T3, v, Tn, 0),6) = 0 for all 74,75, ..., 7, €U
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= O, (14, 79, .., Ty ) = 0and My (74, Ty, ..., Ty, §) = M((Tl, Tgy ey Tp) O),g) = 1and L,(74, Ty, ..., Ty, §) =
L((Tl, (DY O),g) =1

For all 74,75, ...,T, € U = M (14, T3, ..., Ty, ¢) = 1.

(3)Forall ¢ > 0,1 = Q, (1,73, ., Tn, §) = Q((T1, T2, o, T, 0),6)

© 74,7y, ..., Ty are linearly dependent and 0 = M, (4,75, ..., Tn, §) = M((t4, T3, ..., 75, 0),6) and 0 =
Li(Ty, Ty oy Ty ) = L((Tl, Tgy ey Ty 0),§)

S 14, Ty, ..., Ty are linearly dependent.

(4) Forall ¢ > 0,

O (Atq, A1y, oo, AT, 6) = Q(A(Tq, T3, v, T, 0), €)

Q ((‘L’l,Tz, iy T 0),%) =0 (1'1, Ty, ...,Tn,ﬁ) forall A € R\ {0} and

M; (Atq, ATy, .., ATy, ¢) = M(A(Tq, Ty, ..., Ty, 0), ¢)

M <(‘L’1,T2, S 0),&) =M, (Tl,Tz, s Ty ﬁ) forall 1 € R\ {0}.and

L, (A1, A1y, .., ATy, ¢) = L(A(T4, Ty, .., Ty, 0), )

L <(‘L’1,T2, iy T O),ﬁ) =1L, (‘L’l,Tz, ...,‘[n,ﬁ) forall 2 € R\ {0}.
(5) For all 7,,75..,Th+$ +z€U and ¢1,65,63>0. Then Q;(7q, 75 .., Tn + b +7 (¢ + 65 +63))
= Q((ty, 75 o, Ty + {+2,0), (51 + 62 + 63))

= Q((‘L’l,‘[z, vy Ty 0) + (14,79, o, £,0) + (14,75, ..., 2,0), (¢; + ¢, + g3))

2 Q((T1»T2» s T, 0), C1)*Q((T1'T2' v 5 0), Cz)*ﬂ((TpTz' s 2,0), C3)

= O (71, Tg) ) Tny §1) 20 (T1, T2, -, §,62) 404 (74, T2, 0, 2, G3)

Q1(T1'T2: o Tn+th+7,(c; +65 + C3))

> Oy (71, Ty, oy Ty §1) 804 (71, T2, ooy £ 62) #Q, (T4, T5, .., Z, 63) aNd

M1 (71, T30 s Tn + 5 +2, (51 + 62 +63))

= M((Tl,rz, o, Tn+h+2,0), (¢ +¢, + §3))

= M((Tl,’l'z, ey Ty 0) + (14,79, 0, £,0) + (74,75, ...,2,0), (¢ + ¢, + cg))

< M((Tl,rz, I 0),(1) ) M((Tl,Tz, wir [ 0),g2) %) M((Tl,l’z, e Z, 0),g3)

< My (71, T2, o, Tny 61) @ My (71, T2, -, §2) @ My (T4, T2, -0, 2, 63)

M1 (71, T30 oo Tn + 5 + 2, (61 + 62 +63))
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< M (14, Ty 0, Ty 1) @ My (14,73, o0, B, 62) @ My (74,75, ...,2,¢3)  and Ll(rl, Ty, v, Tn +H+7 (¢ + ¢, +
§3))

=L((t1, T w0, Tn + D +2,0), (61 + 62 + 63))

= L((‘[l, Ty, e, Ty 0) + (74,72, o, £,0) + (74,72, ...,2,0), (61 + ¢, + §3))

< L((‘[l,‘fz, v Tr 0),g1) %) L((Tl,‘l,'z, wir 0),g2) %) L((Tl, Ty ey Z) 0),g3)

< Li(ry, T2 o0 Tny 61) @ Ly (74,72, -, §2) @ Ly(74, T2, -, 2,63)

L1(T1»Tz» v Tn D +2,(61 + 6 + §3)) < Li(ty, 720 0, Tny 61) @ Ly (74,72, -, 9, 62) @ Ly (T4, T2, -, 2, 63).

(6) Q1 (11,72, o) Ty §) = Q((74, Ty, ..., Ty, 0)g) is @ continuous in ¢ and M, ((Tl,TZ, ey Ty §) =
M((z4, 72, -, 75, 0),¢) isa continuous in ¢ and L, ((Tl,‘[z, iy Ty §) = L((71, T3, ., Tn, 0), ) is @ continuous in

C.
(7) limg 60 Q4 (74, T2, oo, Ty §) = limg_,ooﬂ((rl,rz, s T, 0), g) = 1and lime, oM (74,72, ..., Ty, §) =
limg_mM((rl,rz, i Ty 0),() = 0and lim._,, Ly (71, T, -, T, §) = limg_,mL((rl,rz, iy T 0),() = 0. Then
(U, Qq, M4, L1, 4,0) isan NR-n-NS.

Similarly, we can prove that (U, Q,, M,, L,, 4,@) isa NR-n-NS.
The following theorem establishes that if sequences in ‘U and H are convergent, then their Cartesian product

also converges.

Theorem 3.8. Let 7, be a sequence in an NR-n-NS (U, Q,, M;, L,, 4,@) converging to T in U, u, be a sequence
in an NR-n-NSs (U, Q,, M,, L,, 4,@») converging to u in #, then (t,,, i) is a sequence in an NR-n-NS (U X
H,Q,M,L,4,Q) convergeto (t,u) € U X H.

Proof. Let Y € (0,1) and ¢ > 0. Since {r,} is a convergence sequence in U, there is n; € N in which
Q (14,79, e, T, Tyn — T, ¢) > 1 =Y and My (74,75, o, Tn1, Tn — T,¢) < Y and Ly (74, Ty, oo, Tpe1, Tn — T, 6) <
Y, forall n > n;.

Since {u,} is a convergence sequence in A, there is n, € N in which Q,(uq, tz, ..., pty — t,¢) > 1 =Y and
M, (q, oy ooy by — 1, 6) < Y and L, (g, Uy, ooy hy — 1, ¢) < Y, for all n > n,.

Then, forall Y € (0,1) and ¢ > 0, there isn, € N, where n, = max{n,,n,} in which

Q(T1, T2, oo s Tt 1) B2o +oor Bne1, (Tny ) = (T, 1), 6)

= 01 (T1, T2 o) Tno1, Tn — T, )8 Q5 (Ug, Ha) s fin—1, Hn — 4 6)

>A-Y)a(1=Y)>1-Y

and M(7y, T2, -, Tne1, H1) B2» - ne1, (Tny tn) — (T, 1), 6)
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< My (71, T2 s Tne 1, Tn — T,6) @ Ma(ly, ) s fine1s fin — 15 6)
<YQY<Y

and L(ty, T2, ) Tno1) 1y B2s s Bne1, (Tny tn) — (T, 1), 6)

< Li(t1, 72 s Tne1s Tn — T,6) @ La(iq, gy wovs i1, in — 1, 6)
<YQYKY.

Thus, {(zy, un)} converges to (z, u).

The next result confirms the validity of the converse of Theorem 3.8.

Theorem 3.9. Let (7, u,) be a sequence in an NR-n-NS (U x H,0,M, L, ,@), then t,, is a sequence in an
NR-n-NS (U, 24, M;,L,, 4,®) converge to T in U and {u,,} be a sequence in an NR-n-NS(#,2,, M,, L,, 4,®)
converge to p in H.

Proof. The proof of this theorem follows directly and is therefore omitted.

The upcoming theorem proves that Cauchy sequences in U and H yield a Cauchy sequence in their Cartesian

product.

Theorem 3.10. Let {r,} be a Cauchy sequence in an NR-n-NS (U, Q,,M;,L;,4,®) and {u,} be a Cauchy
sequence in an NR-n-NS (U,Q,,M,, L,, 4,@®), then {(t,, u,)} is a Cauchy sequence in an NR-n-NS (U X
H,QM,L,6,Q).

Proof. By Theorem 3.6, (U X H,Q,M, L, 4,@) is an NR-n-NS. Since t,, be a Cauchy sequence in an NR- n-NS
(U, Q, My, L, 4,0), then forall Y € (0,1) and ¢ > 0, there is n; € N in which Q, (74,73, ..., Ty — T ) > 1 —
Y and M; (74, T3, o, Tn — Tho §) < Y, forall n,k > n; and Ly (74,75, ..., Tp — T, §) < Y, forall n,k > n,.

Since {u,} be a Cauchy sequence in an NR- n-NS (#, Q,, M,, L,, 4,@®), then for all Y € (0,1) and ¢ > 0, there
isn, € Nin which Q,(uy, ty, -, thy — g, §) > 1 —Y and M, (uq, Uy, -, o — tx, §) <Y, for all n, k > n, and
Lo (uy, gy ooy iy — Uk, ) <Y, forall n,x > n,. Then for all Y € (0,1) and ¢ > 0, there is n, € N where, ny =
max{n,,n,}, forall n,x > n,.

Q(T1, T2 oo s Tty 1y B2y s a1, (T, n) — (T ), §)

= 0 (T4, T2, ) Tno1, Tn — Tk §)#Q (fy, Y2, +ov) Un—1, Hn — Pk §)

>(1-Y)#(1-Y)>1-Yand

M(Ty, T, o) Tty s H2s s Bne1, (Tny Hn) — (Tk, k), §)

< My (74, T2, oo Tne1, Tn = To §) @ Mo (g, s wovs -1, in — M §)

<YQ@Y<Yand

L(7y, Ta) o) Tnets 1y Moy o ine1s (T n) — (T k), 6)

< Li(T1, T2 s Tne1, Tn — Tk §) @ Lp(pty, f2) s Un—1, Bn — k> §)
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<YQYKLY.
Thus, {(7,, uy)} is a Cauchy sequence in (U X £, M, L, 4,®).

The next theorem establishes that the converse of Theorem 3.10 also holds.

Theorem 3.11. If {(t,,, u,,)} is a Cauchy sequence in an NR-n-NS (U X ,02,M, L, ,®), then {7} is a
Cauchy sequence in an NR-n-NS (U, 2y, M;,L,4,@) and {u,} is a Cauchy sequence in an NR-n-NS
(H,0,,M,,L,, 4,0).

Proof. Assume {(t,,, u,)} is Cauchy in (U X H,Q, M, L, 4,®). Then, for every Y € (0,1) and every ¢ > 0 there
exists N € N such that for all n, K > N, we have

'Q(TlJ T2y s Tn—1, U1, U2y v Un—1, (Tn' .un) - (TK, :uK)' C) >1-Y,
M(Ty, T2, o) Tt By B2y s Bne1, (Tns thn) — (T k), §) <Y,

L(T1, T2, s Tno1s My Moy ooe s Mn—1, (T i) — (T, 1), 6) < Y.

By the product-space definitions, we have, for each n,Kand ¢ > 0,

Q(Tq, T o) Tty By Hoy oos bn1, (Tn, Hn) — (Tk, k), §)
= 0y (T1, T2, o) Tno1, Tn — Tio )80 (U1, oy wov s Pnm1, M — UK ),
and
M(Ty, T3 o) Tnot 1, B2y s a1, (Tny n) — (Tk, 1K), §)
=My (71, T2, o) Tn-1, Tn — Tks §) @ M (g, Hp) ooy Mn—1) Bn — HK5 S),
and
L(71, T2, s Tne1s Bay My oo Bn—1, (Tny thn) — (T 1K), 6)
= L1 (T, T2 ) Tn-1, Tn — T §) @ L (g, oy ooy Un—1, Hn — MK 6)-
Using the assumed order-properties of « and @ we deduce for all n, K > N:
Q1 (T4, T2y s Tno1, Tn — T §) Q2 (g, o) ooy Une1s M — B0 §) < Q1 (T4, T2, o, Tnog, Tn — TR0 6D,
o)
Q1 (T4, T2 ) Tno1, Tn — T/ )
= O(Ty, T2, o) Tty By B2s s Bn—1, (Tns hn) — (Tk, k), §)
>1-Y.
Similarly,
Q (1, ) o) inm 1y o — MK S)
= Q(Ty, Ty oo s Tnots 1, Hoy s a1, (Tny n) — (T ), §)
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>1-Y.

For the indeterminacy and falsity parts, sincea @ b > aand a @ b > b, we obtain, for all n, K > N:
My (71, T2, ) Tno1, Tn — Tk §)

< My (74, T2, oo Tne1, Tn = To §) @ Mo (g, g, oovs -1, iy — M, §)

= M(Tq, T2, ) Tno1, H1s B2y -+ Bn—1, (Tn, n) — (T, 1K), §)

<Y,

and

My (1, o) oor Bne1, Bn — Mo §) < Y.

Analogous inequalities hold for L,, L,:

LyQuq, Moy oo -1, Bn — Hir §) < Y and Ly (py, py, ooy Pin—1, fin — Ui ) < Y.

Combining the above, we see that for every Y € (0,1) and ¢ > 0 there exists N such that for all n,K > N,
Q (14,79, ey T, Tn — T, 6) > 1 =Y, and M,(74,7T5, ., Tn1, Tn — T, §) <Y, and L,(ty, Ty, oo, Tno1, Ty —

Tk, ¢) < Y, and the analogous three inequalities for Q,, M, L.
Thus {t,,} is Cauchy in (U, Q, My, L,,4,@®) and {u,,} is Cauchy in (¥, Q,, M,, L,, 4,@), as required.

Theorem 3.12. If (U,Q,,M;,L;,4,@) and (U, Q,,M,,L,, 4,@) are complete an NR-n-NSs, then the product
(UXH,QM,L,+,Q) is complete an NR-n-NS.

Proof. Let (t,, i) be a Cauchy sequence in U x #. Then, Theorem 3.11

= {7,} ia a Cauchy sequence in (U, Q;,M;,L;, 4,@®) and {u,,} isa Cauchy sequence in ( U, Q,, M,,L,, 4,0 ).
Since U and H are complete, therefore {r,} is a convergence sequence in U and {u,} is a convergence
sequence in H.

Now, Theorem 3.8 = {(t,, u,)} is a convergence sequence in U X H'.
The result below can be established using methods similar to those employed in Theorems 3.9 and 3.10.

Theorem 3.13. If (UXH,Q,M,L,4,0D) be a complete an NR-n-NS, then (U,Q,M;,L;,4,0) and
(U, Q,,M,, L,, 4,0) are complete an NR-n-NSs.

Proof. Let {t,,} be a Cauchy sequence in U, {u,} be a Cauchy sequence in H. Then, Theorem 3.10 = (t,, uy,) is
a Cauchy sequence in U x H. Since U x H is complete = {(t,, u,)} is a convergence sequence in U X H by

Theorem 3.9 = {r,} is a convergence sequence in U and {u,} is a convergence sequence in F.
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4. Conclusion

In this work, we introduced and systematically developed the framework of neutrosophic rectangular n-

normed spaces (NR-n-NS), establishing their fundamental structure and analytical properties.

The study showed that the Cartesian product of two NR-n-NS naturally inherits the neutrosophic
rectangular n-normed structure, thereby preserving the underlying neutrosophic behavior and geometric
characteristics of the component spaces. Moreover, it was proved that the Cartesian product of complete NR-n-
NS remains complete, ensuring the stability of convergence processes within the product environment. Several
supporting results and theorems were obtained to strengthen the theoretical foundation of the proposed
framework. These findings provide a robust platform for further exploration of neutrosophic functional analysis
and open new avenues for applications involving uncertainty, indeterminacy, and multi-dimensional

neutrosophic modeling.

5. Future directions

This research lays the groundwork for a variety of potential future studies. One direction for continued
exploration involves extending the theory of neutrosophic rectangular n-normed spaces into operator theory
particularly focusing on the definition and analysis of linear mappings and functionals in such frameworks.
Another area of interest is constructing neutrosophic analogues of inner product spaces, which may vyield
valuable geometric insights.

Further investigation could address the topological characteristics and continuity-related aspects of
Cartesian products in neutrosophic normed environments. Topics such as compactness, connectedness, and
convergence behavior within these structures merit deeper analysis. Moreover, applying these theoretical
developments to practical domains involving uncertainty-such as decision science, control mechanisms, and
data-driven modeling-could lead to impactful applications.

Finally, identifying fixed point results, establishing criteria for completeness in more generalized
neutrosophic settings, and incorporating probabilistic or statistical perspectives within the framework of

rectangular n-normed spaces represent open and intriguing challenges for future research.
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