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1. Introduction
The theory of summability and its subfields has been a longstanding area of interest for researchers in the

engineering sciences, applied mathematics, and functional analysis. The exploration of summability methods,
sequence spaces, and their associated transformations plays a fundamental role in the analysis of series
convergence and its wide-ranging applications. This area of research frequently intersects with various
mathematical disciplines, including calculus, approximation theory, quantum mechanics, probability theory, and
Fourier analysis.

Over the years, summability theory has undergone substantial development—not only through the
formulation of summability methods based on classical matrices such as Holder, Fibonacci, Euler, Cesaro,
Lucas, Hausdorff, and Noérlund, and the associated sequence spaces—but also through the study of matrix
transformations and their rich topological and algebraic structures. In recent years, growing attention has been

directed toward absolute summability methods and the novel sequence spaces they have generated, offering
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new perspectives and deepening the understanding within this dynamic field. Another branch of research related
to statistical convergence has also attracted considerable interest from scientists. Consequently, contemporary
studies in summability theory continue to make significant contributions to the advancement of mathematical
literature (see (Ellidokuzoglu et al., 2018; Gokge, 2022, 2024; Gokce & Sarigol, 2019, 2020a, 2020b; Gurdal &
Yamanci, 2015; Indumathi et al., 2023; Yamanci1 & Girdal, 2015; Huban & Girdal, 2021; Kara & Bayrakdar,
2021; Kisi et al., 2025; Kisi & Gurdal, 2022; Kisi & Erhan, 2018; Savas et al., 2022; Sarigél, 2010; Yaying &
Kara, 2021)).

In this paper, firstly, the absolute summability method |CY, ¢| derived by transformation matrix obtained
by the g-Cesaro matrix is introduced and then, the necessary and sufficient conditions for |CY?, ¢|, =
|CP,51,1C9, | = |CP,6|,and |CY, |, = |CP, 6|, are established, where 1 < s < . In addition, by
obtaining new results for certain situations, the importance of using the g-analogue concept in absolute

summability theory is emphasized and the scope of previous studies is expanded.

First, let us recall some basic notations and concepts.

By w, l,, cand l; (s = 1), we represent the set of all sequences of complex entries, the sequence spaces
of all bounded, convergent sequences and also the space of all s-absolutely convergent series, respectively.
Also, throughout the paper, N = {0,1,2,3, ... }. Let A = (4;;) be any infinite matrix of complex entries and U,V

be two subspaces of w. If the series

A] (U.) = Z Ajiui
i=0

converges for all jeN, then, it is said that the A-transform of the sequence u = (w;) is defined by A(u) =
(Aj (w). Also, it is said that A determines a matrix transformation from the space U into another space V, and
the class of all infinite matrices A : U — V is represented by (U,V). If 4; = 0 for i > j, and otherwise A;; #
0 for all j, i, then it is said that A is a triangle.

Unless otherwise specified, throughout this study, we assume that A = (Aﬁ) is an infinite matrix of

complex components for all j,i €N, ((pj) and (6j) are any sequences of positive numbers, and also s*

indicates the conjugate of s thatis 1/s+1/..=1for s >0, 1/.=0for s =1.

On the other hand, one of the key concepts addressed in this study is the g- analogue of a mathematical
expression, which involves generalizing the expression by introducing a parameter q. As g — 1, the g-
analogue naturally reduces to its classical method. Although the origins of g-calculus can be traced back to the
work of Euler, it has become a more vibrant and actively researched field in recent years. g-calculus has

attracted attention due to its wide range of applications in mathematics, physics, and engineering. It finds
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extensive use in various branches of mathematics, including approximation theory, combinatorics, quantum
algebra, special functions, operator theory, hypergeometric functions, and beyond. The g-Cesaro matrix C9 =
(c,l.), which is one of the basic concepts of this study, has recently been defined by Aktuglu and Bekar (2011)
as follows:

qv
q ——0<v<
Cw =3 [n+ 1],

0, v>n

n

where [n], is the g-analogue of a non-negative number n and identified by

1—q"
, eRt —{1
[nlg=91-¢q 1 t
n, q=1.

In fact, the g-Cesaro matrix has been used in some previous studies (Cmar & Et, 2020; Erdem, 2024; Yaying et
al. 2025; Yaying et al., 2021). While these studies mainly focus on classical or statistical forms of g-Cesaro
summability, the present paper differs from the existing literature in that it introduces an absolute summability
method generated by the transformation matrix obtained by g-Cesaro matrix, which provides a stronger and
more flexible convergence framework. Absolute summability often yields results that cannot be obtained
through other g-summability methods, making the method particularly effective in situations where enhanced
convergence, stabilization, or smoothing is required. Moreover, the absolute g-Cesaro method has potential
applications in areas such as sequence transformations, approximation processes, adaptive smoothing, and
signal or data analysis, where stronger convergence criteria play a significant analytical role.

At this point, it should be emphasized that g-Cesaro offers a more adaptable convergence analysis
framework than the classical Cesaro approach. This flexibility arises from the role of the parameter g, which
functions as a deformation factor in the summability process. As q — 1, the classical Cesaro summability
method is recovered. For values of g different from 1, however, the weights of the terms are redistributed,
which frequently ensures convergence in situations where the classical method does not succeed. Because of
this property, g-Cesaro techniques find relevance in several areas, including statistical convergence,
approximation processes, and the theory of g-difference equations.

To highlight the distinction between g-analogue summability and its classical counterparts, consider the
sequence
(="

Vn+ 1

This sequence is not classically convergent, but it becomes summable for 0 < g < 1 under a suitable g-

Xn =

Cesaro summability method (see Figure 1 for ¢ = 0.7,s = 1). Beyond these theoretical aspects, applications
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to Fourier series and g-difference equations reveal the practical importance of g-Cesaro methods. They provide
a refined tool for capturing subtle forms of convergence, including weak or statistical types. Furthermore, in
engineering contexts such as signal processing and data compression, it is often desirable to suppress noise or
smooth irregular fluctuations. While traditional Cesaro means apply uniform averaging, this may not suffice for
highly variable data. In contrast, the g-Cesaro framework includes an adjustable g parameter that allows the
researcher to balance smoothing and the preservation of local details, offering greater versatility. In future work,
the potential use of g-Cesaro summability in adaptive signal filtering, noise reduction, and compression
algorithms deserves further attention. Figure 1 already suggests that when g < 1, g-Cesaro method smoothing
outperforms the classical scheme, especially in the presence of rapid oscillations.

Nevertheless, some limitations should be acknowledged. Calculations based on g-calculus such as g-
differences or g-summability operators are typically more complicated than classical formulations, and proofs
involving g-Cesaro matrices often require considerable technical effort. Moreover, the parameter q is not
universal; its choice crucially influences the outcome. Therefore, g must be selected carefully according to the
nature of the application, rather than chosen arbitrarily.

{—=1F

Yn+1

Summability Methods Applied to x, =

Loo | original Sequence: x, = 1T
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Absolute Cesaro Mean
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Figure 1: Summability methods applied to x,, =

Figure 1 shows how the absolute g-Cesaro mean, the classical mean, the g-Cesaro summability, and the

(="
Vn+1’

demonstrates that classical summability methods are less effective in mitigating oscillatory behavior, whereas

absolute Cesaro mean methods behave when applied to an oscillatory sequence x, = The figure

the g-Cesaro method accelerates stabilization.

82



F. Gokege Absolute summability methods

Let b = (b;) denote the sequence of partial sums of the series Y u;, and let ¢ = (¢;) be any sequence

of positive real numbers with 1 < s < o. Following Sarigol (2010), the series Y u; is said to be summable
A, @ |, if

> o578 1) = 8y B <0
j=1

This summability method |A, ¢l is highly general and encompasses many well-known absolute
summability methods as special cases, depending on the choice of the matrix A and the sequence ¢. For
example, if one takes the triangle matrix T instead of A, the summability method |T, |, is immediately
obtained (Gokge, 2022). Similarly, choosing the Euler or Fibonacci matrices etc. yields the summability
methods |E”, ¢ls, |F, @ls (Gokee & Sarigol, 2020a, 2020b), respectively. Further examples and related
discussions can be found in (see also (Gokge, 2022, 2024; Gokee & Sarigol, 2019)).

Finally, before moving on to the main sections, let us recall some lemmas that will be used in the proofs:
Lemma 1.1. (Stieglitz &Tietz, 1977)Let 1 < s < oo. A € (I, 1) if and only if

2

NneN

*

[ee) S

sup Z

=0

:N c N finite ; < co.

Lemma 1.2. (Sarigol, 2013) Let A = (A;) be an infinite matrix with complex components, o = (¢;) be a
bounded sequence of positive numbers. If W, [A] < o or L, [A] < oo, then
Cm)72W, [A] < L, [A] =W, [A],

where m = max{1,2"71}, M = sup; ;.

Qi

and

Qi

Lo [A] = sup Z Zlﬁ : G C N finite ;.
i=0

jeG

Lemma 1.3. (Maddox, 1970) A € (1, 1) if and only if

[o.0]
SupZIMIS < o,
J n=0
wherel < s < oo,

Lemma 1.4. (Stieglitz & Tietz, 1977) A€ (1, 1,) if and only if
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sup|A,;| < oo.
n.j

2. Main Results
In this part of the paper, we introduce the absolute g-Cesaro summability method, which combines the
notion of absolute summability with the transformation matrix generated by the g-Cesaro matrix. To obtain this

method, let us take the sequence X, u; and its partial sums b;. Then we get

n

A,(b) = icﬁzbi =i”jiﬁ=zu"(l_%)

i=0 j=0 i=j j=0
and so,
o il ) ( [i]q>
AN, (b) = 11-——1 ) - 1-=2
®) ;u]< )~ 2w
o~ a'l] ~
— ]Z ohn +q1]q i, n>0,A40(b) = u,.
If

> oit 1 84,(B)I° <o,
n=0

the series Y, u; is said to be summable by the method |CY, ¢|,. Also, considering the transformation sequence

(Ty), it can be written that the series Y, u; is summable by |CY, ¢|, if and only if (T;,)e ;. Here

n
1y Z q"[j]
Tn:(pns [n]—qu]', Tl>0,

J=1

1/*
TO =(posu0.

By making a few calculations, it can be seen that the inverse transformation of the transformation sequence (T,)

is as follows:

[n+1], [n—1],
Up = Ip—7 —Thq 1
/s* n /s

®,°'q @5 qn1

,n>0, (D

It is noted in case of g =1 and ¢, =n the summability method |Cq, (pjls reduces to the well known

classical absolute Cesaro method |C, 1|, (Rhoades, 1998).

For simplicity, throughout the rest of the article, it will be used that
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Ulpli + 1 = U+ 11U = 8pg ().
In the following two theorems, we establish the equivalence criteria that characterize when |C9, ¢|, = |CP, |
and |qu (pl = |Cp; 6|S

Theorem 2.1. Let1 < s < o, ¢ = (¢,,) and § = (§,) be two sequences for positive numbers. Every series
summable by the method |CY, |, is also summable by the method |CP, 5], i.e., |C9, |, = |CP, 5] , if and only
if

S*

® (»)

_1/ p][] + 1 41 ,
Z a1, [ e < (2)
j=0 SR (PR

where
1
—_—, =1
ji+1 P
j+1
=] P 1
Ojt1 = []-_|_1]p' p<
1
e p>1
\j + 11,

Proof. Let T, and t,, be the transformation sequences of |C?, ¢|¢ and |CP, §| means of series ) u;, respectively.
It follows from (1) that, for all n > 0,

- Ul - ", [+ 1], - 1],
R e U i vl S VI
; [n],[n+1], 121: [n],[n+1], (pj/s*qj (pj—sl*qj_l

:i p I, [;+1 Zp[]+1]p i,

]=1[n]p[n+1] L[yl +11, g ;/s*q,
. p n-1 B /5
s* q J [ . .
=0, +Zq, n+1]p(mp[z+11q—u+11pmq)r-,
to = @, s T.

So, it can be written that
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where
( Y. ptin+1
" q*n+1],
= p" . .
nj < 1/* ] qu(]); 13]371—1
9, q/[nlpln + 1],
\ 0, Jj>n.

So, it can be immediately seen that (t,)el whenever (T,)els if and only if A € (I;,1). Also, if the series

n - - -
© . —L2 can be considered a telescopic series as follows
p

n=Jj+1 [n] ) [n+1]
( =11
_ , =1
® n l Z (n n+ 1) p

Z [n]p[fwl]p:{ il ]1 1

n=j+l |Z( — )p<1orp>1
—nn — pn+1)’ ’
kn=j+1 1 p 1 p
the sum of the series is found as follows for each value of p:
1
_ =1
jf1 P
j+1
®) p
M= <1
Ojt1 = 3 []-_|_1]p p
! >1
[+ 11, p==

Hence, by applying Lemma 1.1 and Lemma 1.2 to the matrix A, condition (2) is obtained which concludes the

proof.

Theorem 2.2. Let1 < s < o, ¢ = (¢,) and § = (6,,) be two sequences for positive numbers. Every series

summable by the method |C4, ¢| is also summable by the method |C?, 6|, i.e., |C9, | = |CP, 5], if and only if

, © 1/* s
1/*p1[]'_|_1]qs s spn
su 'S —_— + Z —n A ) < 0o,
P\ el T 2y [,

Proof. The proof follows similar steps to Theorem 2.1, therefore it is left to the reader.
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Theorem 2.3. Let1 < s < o, ¢ = (¢,) and § = (6,) be two sequences for positive numbers. In order that,
every summable series by the method |CY9, |, is also summable by the method |C?,6],, i.e., |CY, ¢|; =

|CP, 5|, , the conditions

1/5* p"[n+1], ]
Sup 1/q[n+1] <, ®3)

1/5* n
8,°p
sup sup

j < — 1 * .
n s <pj/s q’[n]pln + 1],

Apg(Df < o (4

are necessary. Moreover, if the conditions

o) n-1 6Sl*pn S\
2 A2 4| | =0 5)

=0(1) (6)

hold, then itis said that |C?, |, = |CP, 6]s.

Proof. Assume that T,, and £,, are the transformation sequences of |C%, ¢|, and |CP, 8|, means of series Y., u;,
respectively.

Using the inverse transformation of T,,, it is obtained that foralln > 1:

S c Pl i+ 1], [ — 1]
T; —Ti_1
Z n+1 Z [nlpln+ 11, (p;/s*qj 1/5 q] 1
c Pl Lt 1, O i+, [,
1, 6 I — ..
Z n+1 (p]/s q] ;[n]p[n-l_l]p (pJ/S q]
61/5* o[ 1] ” n-1 p7
n q s* , . I . ;
1/*6[”[1’1 1]an+6n z 1/ ([]]p[]+1]q []+1]p[]]q)T;

J=19; S*qj[n]p[n + 1]p
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So, it can be written that

Jj=0
where
1
( 5n/5*pn[n+ 1], -
1/5* q”[n+l]p, J
®n
bn] =3 61/S*pn
1/5* .Tl qu(j); 1S]Sn—1
@;"* q’[nlpln+1],
\ 0, j>n.

Here, it can be written that |C?, ¢|, = |CP, 6|, isequal to B € (I, ;). Since | c I c [, B also belongs to the
matrix class ([, 1. ). Hence, with Lemma 1.4, the conditions (3) and (4) are obtained. On the other part, it

follows from Minkowski and Holder inequalities that

o0 1/s ) n-1 s\ /s
R _ p" . p"[n+1]
(thnP) = 25{3 ! Z TV qu(J)TJ'+ 1, . Tn
n=0 n=0 =y Sql[nl,[n+1], @, ° q*[n+1],
%) n—1 s\ 1/s [e9) s\ /s
A, (j "n+1
< Z 67.?[—1 1/ : p pCI(]) T] + Z 6}91_1 11/9*[ ]q Tn
n=0 =19, Sq/[nl,[n+ 1], n=0 @, ° q*[n+1],

@R

o n-1

1
/ = 5™ Apy ()
DI AN DN
\j:l n=j+1 \ j=o |@."°

q/[n],[n+ 1], n=0 <pn/5*q"[n + 1],

)+ P pintll

If T® =0(1),i=1,2, then it is written that (£,)el,, or equivalently, if the conditions (5) and (6) hold,
|C9, p|s = |CP, 5|, This concludes the proof.

3. Conclusion
In this study, it have been introduced the absolute summability method |C% ¢|; generated by a
transformation matrix derived from the g-Cesaro matrix. The main purpose has been to establish the necessary

and sufficient conditions for the inclusion relations |CY,¢l|, = |CP,5],|1CY, @| = |CP,6]sand |CY, ¢l =
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|CP, 5|, for1 < s < oo. The results obtained in this work are expected to enrich the theory of summability by
providing a broader framework that connects g-Cesaro methods with other summability approaches.
Furthermore, these findings may stimulate future research on extending g-Cesaro methods to more generalized
sequence structures, exploring their relationships with modular summability and statistical convergence, and
investigating their implications within sequence spaces and operator theory. In addition to their theoretical
significance, the methods discussed here may find potential applications in various engineering contexts, such
as signal smoothing, adaptive data compression, and other areas where summability techniques play a key
analytical role.
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