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1. Introduction

Matrix operators play a fundamental role in functional analysis and operator theory, particularly in the
study of sequence spaces. They provide a framework for examining how sequences are transformed under
various linear mappings. Among the structural properties of such operators, compactness is of central
importance, especially in spectral theory, where it enables the reduction of intricate infinite-dimensional
problems to finite-dimensional analogues. Consequently, compact matrix operators are closely related to
summability theory, approximation processes, and the analysis of operator equations. Let N = 1,2,3, ... denote
the set of natural numbers, and let w represent the space of all real-valued sequences. Within this framework,
we define several important subspaces:

« ¢, The set of all sequences that are absolutely p-summable,

« £, the space of all bounded sequences,
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* ¢, the space of sequences that converge to zero,
» c: the space of all convergent sequences.

The spaces 4., ¢ and c, are Banach spaces equipped with the supremum norm:

lI%lleo = sup i

Additionally, for 1 < p < oo, the space ¢, forms a Banach space, with the norm:

1/p
lxll,, = (Z |xk|p) .

k

A Banach space X is called a BK-space if the map that takes a sequence to its n-th term, x - x,,, is
continuous for every n. Examples include ¢, and £,,. Given two sequence spaces X and 9, and an infinite real
matrix A = (a,;), we denote the n-th row as A,,. The matrix A maps X to 9) if for every sequence x = (x;), the
sequence

Ax = {Apx}o—o With Ay x = Z A Xy (D
K

belongs to 9). The domain of A is the set X, = x € w: Ax € 9. The notation (X,9) designates the family of
all matrices A mapping from X to 9. Thus, A € (X,9) precisely when the series in equation (1) converges for
every n € N and each x € X, which guarantees that Ax € 9 for all x € X.

Earlier, (Erdem et al., 2024) developed the Motzkin matrix spaces c¢(M) and c,(M), revealing their
internal structure and introducing the concept of the Motzkin core. Subsequently, (Demiriz et al., 2025)
introduced the BK-spaces ¢,(G) and £.,(G) using generalized Motzkin matrices, establishing their basis
properties. Based on these findings, (Erdem, 2024a) explored £,(M) spaces along with compact operators,

while (Erdem, 2024b) extended the theory to Schroder—Catalan matrix spaces with similar results.

2. Pell-Lucas Matrix Operator and Pell-Lucas Sequence Spaces

Pell sequence is historically linked to the English mathematician John Pell (1611-1685), while its
companion sequence, known as the Pell-Lucas sequence, is associated with the work of the French
mathematician Edouard Lucas (1842-1891). Comprehensive studies of these sequences are available in
(Horadam, 1994; Bicknell, 1975; Dasdemir, 2011). It was demonstrated in (Dasdemir, 2011; Ercolano, 1979)
that Pell numbers can be expressed in matrix form. In addition, Atabey et al. (Atabey et al., 2025) introduced a
sequence space generated by Pell numbers. Both the Pell and Pell-Lucas sequences possess well-known
recursive characterizations, among several other equivalent definitions. In particular, the Pell-Lucas numbers

satisfy the recurrence relation
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A = 241 + g2

with initial values A, = 2,1; = 2. According to this formula, the first few Pell-Lucas numbers are

2,2,6,14,34,82,198,478, ... We next examine for the negative Pell-Lucas sequence, defined by A_; =
(1"}

We can easily derive the relation

k

3 + Ay
2 Js =T @
s=0

For a nonnegative integer k, let A, represent the k-th Pell-Lucas number. Consider the matrix @ = (0,,;),
defined by
24

G)nk = 3/111 + An—l
0, k >n,

0<k<n,

where n, k = 1,2, ....

1 0 0 0 0 0

o0 0 0 o

8 8

404 12
o120 20 20

4 4 12 28

— = = = 0 0

48 48 48 48

4 4 12 28 68

116 116 116 116 116

It is obvious that © is triangular. Therefore, the ©-transform of a sequence b’ = (b;,) is expressed as

2 Xie=o Aicby

On = (00 = 5= L
n n—

(3)

Lemma 2.1. (Peterson, 1998) An infinite matrix B = (bn,k) qualifies as regular if and only if each of the
conditions listed below is satisfied.
(@) supX|bng| < o;
neN k
(b) lim ¥bp = 1;
n—oo k

(C) lim bnk = 0.
n—oo
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Theorem 2.2. Pell-Lucas matrix © = (0,,,) is regular.

S fonel =Y 0 =Y 2
Tl,k_ n,k_ P
- - k=03/1n+/1n_1

~ lim Y, 0, = 1, hence the condition (b). Additionally, condition (a) is satisfied easily.
n—-oo

Proof. We have

- . 21 . 1 : . .
Again, lim 0,,, = lim k=2, lim ———— = 0, which satisfies condition (c).
n—-oo ’ n—oo 3An+An—1 n-ooo 3Ap+An-1

3. Pell-Lucas sequence spaces

We now introduce the Pell-Lucas sequence spaces c(®) and c,(0). A sequence belongs to one of these

spaces if and only if its ©-transform lies in the respective classical sequence space c or c,.
22k
34, + 4

. 22k
CO(G))— h = (hk) € a)rlll_)n;lo mhk = 0.

c(0) = {h — (h) € w: lim hy exists} 1< p< o);
n—->0oo
We can express G(0) as Gg, Where G denotes any of the spaces c, ¢,.

Theorem 3.1. The spaces ¢, (0©) and ¢(®) are BK-spaces with the norm defined by

16" lco0) = 1D llccey = sup|(©b')y|
neN

Proof. The proof is straightforward from Theorem 4.3.12 of Wilansky (\Wilansky, 1984).
Theorem 3.2. ¢,(0) = ¢, and ¢(0) = c.
Proof. We define the mapping as follows:

T:¢y(®) - ¢,y such that T (b') = Ob'.

From the result 7(b') = 8 = b’ = 0, where 6 is the zero element of ¢,(0). This proves the injectivity of the

mapping 7. Furthermore, let Q' € £, and define the sequence b’ = (b;) by

k
1A

31
b= ). (FDF TR (ke ) 4)
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Then

k
bim (00), = Jim, (Z Tt I )

l
22, 3+ Ay
= i _ ]—
Hm Z 34, + Aes Z (=1) 2k, &
- i

= lim Q;

k—oo

= 0.
Therefore, b’ € ¢,(0). Thus, T is surjective and preserves the norm. Consequently, ¢,(0) = c,. Other one can

be done in similar way.

Theorem 3.3. The inclusions ¢, € ¢,(0) and ¢ c ¢(@) are strict.
Proof. Given that the matrix © is regular, the inclusions arise naturally. To establish their strictness, consider the

sequence b’ = (1,0,1,0, ... ). We can compute the following for this sequence

b’ —Z e o2 (Ao + Ay + -+ 2,), where € N
( )n_l_03/1n+/1n—1l_3/1n+ln—1 ot Ay ), Where pi .

This expression converges, implying that b’ € ¢(0) \ c¢. An analogous approach can be utilized to prove the

other case.

Definition 3.4. A sequence z = (z,,) in a normed space (Z, || - ||z) is defined as a Schauder basis if, for every

vector w € Z, there exists a unique sequence of scalars (c,,) such that the following holds
n
- Z CnZn
n=0 Z

The mapping k: G(0) — G, defined in the proof of the previous theorem, establishes an isomorphism

lim

n—->oo

between these two spaces. Consequently, the preimage of the basis {e®},ey in G serves as a corresponding

basis for the newly constructed sequence space G(0).

Hence, we arrive at the following conclusion:

Theorem 3.5. Consider the sequence b = (b,(l")) define for each fixed k € N as follows:

(D™ @A + A1) .
—-1<k<
b‘r(lk): 27, fn—1<k<n,

0 f0<k<n—-—1lork>n.
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Then we have the following results

Corollary 3.6. The sequence spaces c,(0) and c(0) are separable.

Proof. The conclusion follows immediately from Theorem 3.1 and Theorem 3.5.
4. a—,[—,y — duals

We identify the « —, B —, and y — duals of the spaces ¢, (®) and c(0). Some key results from Stielglitz and
Tietz (1977) will be summarized without proofs, as they are crucial for our discussion.

Lemma4.l. Forl1<p <o, A= (ay) € (cy:?1) = (c: £,) iff

[oe)

sup E Z Api| < 0.
E€E,
= neE
Lemma4.2. For1 <p < o, A = (a,) € (cq:¢) iff
lim a,,; exists, Vk € N; (5)
n—->0o
sup |ank| < oo. (6)
neN =1
Lemma4.3. A = (ay) € (c:c) iff
sup ) lapkl <o
neN
k=1

lim a,; exists, Vk € N;

n—-oo
and Al—r»?o Qp €XISts.
K
Lemmad.4. A = (a,) € (cp: ) = (c: €y) iff
sup > |@nk| < oo

neN
=1

Theorem 4.5. Consider the infinite matrix 8’ = (my,;) defined by
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34, + A,
. ) (~Drk Msm
mnk - Zﬂ.n
0, ifk >n

fn—1<k<n

and the set 3, as

[ee]

31 =5 =(s;) € w:sup Zm;lk<oo
E€Eo 1= |neE
then
[co(®)]% = [c(©®)]* = 3.
Proof. By (4), we get
n
3, + A,
Subi = su| . (- At Aun) o,
k=n-1 ZAn
= (34, + Apq)
) ((—1)“ Ty )
k=n-1 ZAn
= 8,0, vneN. (7)

Therefore, by (7), we get s € [c,(0)]% or [c(0)]* & B’ € (¢, 1) = (¢,£1). Thus from Lemma 4.1, we
have [cy(0)]* = [c(©)]* = 3;. Hence, the result is proved.
Theorem 4.6. Consider the sets 3,, 33, 3, as :

< 00};

3, = { Cvew Y [a(2)(Eetia
k

34k + g
33 = {s = (s,) € w: |supMsk| < 00};
k 24y
and
3+ Ay .
34 = {S = (s) € w: ]11_1)‘{)10 Tlsk ex1sts},
where

A (Sk> (BAR + Ak_1>
Ak 2

(5_,1 _ Sk+1> (3)% + Ak—l)
Ao Apsa 2 '
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Then,

[c0(®)]F = 32 N 35, and [c(0)]F = 3, N 3s.

Proof. Let (s;) € w and define b'= (b;) according to (4). Now, consider the equality

n n k
34+ A
> sti = w30 ooy
Y 22

k=0 k=0 k—1
= 34, + A 31, + 1
Sk Sk+1>( k k—1) , n n-1 ,
= ck_ Q 2l e )
Z (Ak Lot 2 k¥ T Sl
k=0
= 34, + A 31, + 1
S _ _
= Z A (—") (—" ‘ 1) Q + 5,00, (8)
i 2 22,
k=0
= (&'Q"), foreachn € N, 9

where the matrix &' = (&',,;) is

r(s_k B Sk+1) (3/1k + A1

itk <mn,
Ae Ayt 2 )

&' e = | (3/1n + An_1> I

22,

\0 itk >n.

It is evident that the columns of the matrix &' are convergent, as we have

.~ (Sk  Sk+1 3Ak+Ak—1>
%‘i?o@”"_</1k AkH)( 2 ' 10

By (9) we have s € [c,(0)]? & & € (¢, 0).
Hence by (8), (10) and Lemma 4.2, we have

2

t,

: S\ (3Ak + Ak-1
ima () (557)

and

3k + Ag—
k
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Therefore,

[co(©)]F = 3. N 3s.
Similarly, the g-dual of the space c(®) can be determined using Lemma 4.3 and equation (10).
Theorem 4.7. [co(®)]Y = [c(©)]" = 3, N 35.
Proof. The result can be derived similarly as the previous theorem, this time using Lemma 4.4.
5. Characterization of Matrix Classes

Now, we explore the characteristics of the matrix classes (cy(0),G) and (c(0),G), where G can be any of the
spaces 4., ¢, Or c,. For convenience, we denote

—_— (an,k an,k+1) 34 + A1
Cnk = - ’

2 A 2 b

for all n,k € N. Additionally, if we have b',Q)' € w such that Q' = ©b’, we can express the following
relationship based on equation (8)

$ §-1

! ~ ! 3Af + Af_l !
z An by = Z Cnry + Ta"‘fﬂf (n, € €N). (12)
k=0 k=0 ¢

Next, we outline several conditions to consider as we move forward

Slrllp Yk |Cnil < oo, (13)

(Sl%ik‘l an’k):):o € {, foreveryn € N, (14)
(Sl%i’“l an,k):):() € c foreveryn € N, (15)
sgpIZk ne| < oo, (16)

%i_r)£10|2k any| = aforallnk €N, (17)
lim (3k anx) =O0foralln,k € N, (18)

i li_r)glofn,k = qa, fork €N, (19)
nrlli_{’f)lofn,k = 0 for k € N. (20)

Using results from (Peterson, 1966) along with Theorem 4.6 and equation (12), we can derive the following
conclusions:

Theorem 5.1. We have
(1). Thematrix A = (a, k) € (co(0),£) < conditions (13) and (14) are satisfied.

(2). Thematrix A = (a, k) € (co(0),cy) < conditions (13), (14), and (20) hold.
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(3). Thematrix A = (a,x) € (c,(0),c) & conditions (13), (14), and (19) hold.

Theorem 5.2.

(1). Thematrix A = (a,x) € (c(0),%s) < conditions (13), (15), and (16) are satisfied.
(2). Thematrix A = (a,x) € (c(0),cy) < conditions (13), (15), (18), and (20) hold.
(3). The matrix A = (a,x) € (c(0),c) & conditions (13), (15), (17), and (19) are hold.

6. Hausdorff measure of noncompactness

In this section, we derive the necessary and sufficient conditions for an operator to be compact from c,(0)
to a space H € {cy, ¢, ¥, £1}, using the Hausdorff measure of noncompactness. To begin, we revisit key results
and notations that are essential to our analysis. For further details on noncompactness, refer to (Dagl, 2022;
Malkowsky & Rakocevi¢, 2000; Rakocevi¢, 1998; Demiriz & Erdem, 2024).

Lemma 6.1. Let ffo =ch = cf = ¢,. Moreover, for G € {£,, ¢, ¢y}, the following holds

IG1lg = NIGlle,-

Lemma 6.2. (see Theorem 4.2.8 of (Wilansky, 2000)) Let G and  be two BK-spaces. Then, the space (G, H)
is included in B(G, H). This means that for every operator A in (G, H), there exists a corresponding linear
operator L, in B(G,H) defined by £,g = Ag forall g € G.

Lemma 6.3. (see Theorem 2.15 of (Malkowsky & Rakocevi¢, 2000)) Consider a bounded set Q < c,, and

introduce the operator P,: c, — ¢, defined as follows:

P.(go, 91,92, ) = (G0, 91, 92 -+ s, 0,0, ...) forany g = (gx) € c.

Then, we have

x(Q) = lim (Supll(l - Ps)(g)ll>,
$7® \geQ

where I represents the identity operator on c,.

Lemma 6.4. (see Theorem 1.23 of (Malkowsky & Rakocevi¢, 2000)) Let G be aBK spaceand ¢p € G. If A €
(G, H), then the norm satisfies

ILall = l|Allg3¢) = sup|lAnllg < co.
n

Lemma 6.5. (see Theorem 3.7 of (Mursaleen & Noman, 2010)) Let G be a BK-space that contains a non-empty

set. The following statements are true:
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@ IfA€(G,cyp),then

1£4ll, = lim sup |4, |5,

n—oo

and £, is compact

lim 14, I5 = 0.
(b) IfGghasAKandA € (G,c), then

1. . . .
Ellm sup||4, — allg < [[£ally < limsup||4, —allg,

n-oo n-o
and £, is compact
lim [|4, = all; = 0,
where a = (a;) with a;, = Ai_r&a”k forall k € N.
(c) IfA€e (G, ¥,),then

0 < [[£ally = limsupl|An]lg,

n—-oo
and £, is compact if

lim |14 = 0.

For the rest of this paper, E, denotes the subset of E consisting of elements of N that are greater than k.

Lemma 6.6. (see Theorem 3.11 of (Mursaleen & Noman, 2010)) Let G be a BK-space containing a non-empty

lim sSup E Alle | =L <4-lim sup E Az ,
k c 0( _ ” n”g) ” A”)( k c 0< ” n”g)

NneE

and

L, is compact & ]lim (sup Z ||An||§) = 0.
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Lemma 6.7. Consider a sequence space G, with matrices A = (a,;) and A = (&,;) as defined in (11). If A is
included in the space (cy(0),G), then it follows that 2 is also part of (c,, G). Additionally, for any g belonging
to ¢y (0), there exists a sequence y that corresponds to g such that Ag = Uy.

Theorem 6.8. The following statements hold:
@ A€ (cy(0),cp), then

n—oo

1£ally = limsup > [
k

()  If A € (co(0),c), then

1
Slimsup " [ee = @] < [1Lally <limsup " [ée —
n—oo = n—-oo &
where a; = lim ¢,,.
n—->oo

() IfA € (cy(0),44), then

0 < |[£4ll,, < lim supz |Crkcl-
K

n—oo
(d) 1f A€ (co(O),¢,), then
_ K] : [K]
1im |4l ey 0y,e) < Lally < 4lim [|All g, 6).e,)

where

neE

,k € N.

W
141l coen.en) = SUP Z
k

Proof. (a) Let A € (cy(0), cy). It can be observed that

14nllzo) = 112allzy = 112alle, = D 16wl
k

for n € N. Thus, using Part (a) of Lemma 6.5, we conclude that
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n—o0o

1£ally = limsup > [
k
(b) Notice that

12, = @llzy = 112 = elle, = ) 1w — 1)
k

Foreachn € N, if A € (¢y(0),¢), then by Lemma 6.7, we obtain that 2 € (c,, ¢). Using Part (b) of Lemma 6.5,

we can infer that

1. i ) .
> lim sup ||, — allc, < [[Lall, < limsup ||, — allc,,

n—oo n—-oco

Now, using the earlier expression (21), yields

1
Elim supz [Cok — il < |[Lall,, < lim supz |Gk — Ak,
k K

n—-oo n—-oo

which is the required result.

(c) This part is proven similarly to Parts (a) and (b), except that we use Part (c) of Lemma 6.5 instead of Part

(a).

(d) Note that

S

nenN

S

neN

-

44 k

neN

: (22)

Co

Assuming A € (cy(0),#,), then by Lemma 6.7, we have & € (c,,#;). Consequently, by applying Lemma 6.6,

we obtain

* *

lim | sup
k—oo \ EeE,

>

nekE

>,

nenN

< [[£ally =4~ lim sup
0

Co Co

by using the earlier equation (22), reduces to

; (k] ; [k]
lll_,nolo”A”(Co(@).fﬂ < ”LA”)( < 4,11_{20”9”(50(@),{)1)'
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as desired.

Corollary 6.9. The following assertions are true:

(a) Let A € (cy(0),cp), then L, is compact &

lim Y [&,]=0.
n—oo
k

(b) Let A € (cy(0©),c), then L, is compact &

lim (Z 16 — akl) — 0.
n—->oo
k
(c) Let A € (cy(0),?), then L, is compact if

lim Y [&,]=0.
n—-oo
k

(d) Let A € (cy(0),%,), then L, is compact &

lim | sup (Z
k—o \ EeE,

k

neN

))-o

7. Conclusion

Research on Pell-Lucas numbers has traditionally focused on fundamental aspects such as identities,
recurrence relations, generating functions, Binet’s formula, and special transformations, as well as their
connections with hyperbolic quaternions (Horadam, 1994; Aydin, 2022). In this work, we extend the study by
introducing the Pell-Lucas sequence space and conducting a detailed analysis of the spaces ¢(0) and c,(0). The
study further explores the fundamental properties and inclusion relationships of these sequence spaces,
establishes a Schauder basis, and determines their a-, §-, and y-duals. Our investigation also emphasizes the
measure of non-compactness in c,(0). We are hoping that the results presented here will be useful for future
research in this area. Further studies may extend this work to the domain of the Pell-Lacus matrix in other

sequence spaces such as Maddox’s spaces, cs, and bs.

Acknowledgments: | am grateful to the reviwers for their careful reading and valuable suggestions for improvement of the article.

104




S. Shah On the domain of the Pell-Lucas matrix in the spaces c and ¢,

Availability of Data and Materials: Not applicable.

Ethical Declarartions: Not applicable.

Conflicts of Interest: There is no conflict of interest.

Funding: Not applicable.

Authors’ Contributions: The author is the sole contributor to this article.

Generative Al Declaration: The author declare that generative artificial intelligence tools were not used to generate scientific
content, results, or conclusions in this manuscript. Any use of Al tools, if applicable, was limited to language editing and did not affect

the scientific integrity of the work.

References:

Aydin, F. T. (2022). Dual-hyperbolic Pell quaternions. Journal of Discrete Mathematical Sciences and
Cryptography, 25 (5), 1321-1334.

Atabey, K.I, Kalita, H., & Et, M. (2025). On Pell Sequence Spaces. Palestine Journal of Mathematics, 14 (1),
1-15.

Bicknell, M. (1975). A primer on the Pell sequence and related sequences. The Fibonacci Quarterly, 13 (4),
345-349.

Dasdemir, A. (2011). On the Pell, Pell-Lucas and modified Pell numbers by matrix method. Applied
Mathematical Sciences, 5 (64), 3173-3181.

Dagh, M.C. (2022). Matrix mappings and compact operators for Schroder sequence spaces. Turkish Journal of
Mathematics, 46 (6), 2304-2320.

Demiriz, S., & Erdem, S. (2024). Mersenne matrix operator and its application in p-summable sequence
space. Communications in Advanced Mathematical Sciences, 7 (1), 42-55.

Demiriz, S., Sahin, A., & Erdem, S. (2025). Some topological and geometric properties of novel generalized
Motzkin sequence spaces. Rendiconti del Circolo Matematico di Palermo Series 2, 74 (4), 136.

Ercolano, J. (1979). Matrix generators of Pell sequences. The Fibonacci Quarterly, 17 (1), 71-77.

Erdem, S., Demiriz, S., & Sahin, A. (2024). Motzkin sequence spaces and Motzkin core. Numerical
Functional Analysis and Optimization, 45(4-6), 283-303.

Erdem, S. (2024a). Compact operators on the new Motzkin sequence spaces. AIMS Mathematics, 9, 24193-
24212.

Erdem, S. (2024b). Schroder—Catalan Matrix and Compactness of Matrix Operators on Its Associated
Sequence Spaces. Symmetry, 16(10), 1317.

105




S. Shah On the domain of the Pell-Lucas matrix in the spaces c and ¢,

Horadam, A. F. (1994). Applications of modified Pell numbers to representations. Ulam Quarterly, 3 (1), 34-
53.

Malkowsky, E., Rakocevi¢, V. (2000). An introduction into the theory of sequence spaces and measures of
noncompactness. Zbornik radova, 17, 143-234.

Mursaleen, M., Noman, A. K. (2010). Compactness by the Hausdorff measure of noncompactness. Nonlinear
analysis: Theory, Methods and Applications, 73 (8), 2541-2557.

Petersen, G.M. (1966). Regular matrix transformations, 86. McGraw-Hill, London.
Rakocevi¢, V. (1998). Measures of noncompactness and some applications. Filomat, 12, 87-120.

Stieglitz, M., & Tietz, H. (1977). Matrixtransformationen von folgenrdumen eine ergebnisubersicht.
Mathematische Zeitschrift, 154(1), 1-16.

Wilansky, A. (1984). Summability through functional analysis, Vol. 85, North-Holland Publishing Co.,
Amsterdam. Notas de Matematica [Mathematical Notes], 91.

106



	Research Article
	On the domain of the Pell-Lucas matrix in the spaces 𝒄 and ,𝒄-𝟎.
	Shiva Shah*


