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Abstract: In this study, we introduce new Banach sequence spaces 𝑐(Θ) and 𝑐0(Θ), 

defined via a regular infinite matrix Θ = (𝜆𝑛𝑘), where 

Θ𝑛𝑘 = {

2𝜆𝑘
3𝜆𝑛 + 𝜆𝑛−1

0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

 

and 𝜆𝑘 represents the 𝑘th element of Pell-Lucas sequence. The study primarily focuses on 

exploring the fundamental properties and inclusion relationships of the corresponding 

sequence spaces, establishing a Schauder basis, and determining their 𝛼-, 𝛽-, and 𝛾-duals.  

In addition, we characterize the connections between the newly defned matrix classes and 

classical sequence spaces. We also examine the compactness of matrix operators within 

these associated sequence spaces. 

Keywords: Pell-Lucas numbers, Sequence space, Schauder basis, Compactness. 

MSC 2020: 46A45, 46B45, 11B83, 46B50. 

 

1. Introduction 

Matrix operators play a fundamental role in functional analysis and operator theory, particularly in the 

study of sequence spaces. They provide a framework for examining how sequences are transformed under 

various linear mappings. Among the structural properties of such operators, compactness is of central 

importance, especially in spectral theory, where it enables the reduction of intricate infinite-dimensional 

problems to finite-dimensional analogues. Consequently, compact matrix operators are closely related to 

summability theory, approximation processes, and the analysis of operator equations. Let ℕ = 1,2,3,… denote 

the set of natural numbers, and let 𝜔 represent the space of all real-valued sequences. Within this framework, 

we define several important subspaces: 

• ℓ𝑝: The set of all sequences that are absolutely 𝑝-summable, 

• ℓ∞: the space of all bounded sequences, 
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• 𝑐0: the space of sequences that converge to zero, 

• 𝑐: the space of all convergent sequences. 

The spaces ℓ∞, 𝑐 and 𝑐0 are Banach spaces equipped with the supremum norm: 

‖𝑥‖∞ = sup
𝑘
 |𝑥𝑘|. 

Additionally, for 1 ≤ 𝑝 < ∞, the space ℓ𝑝 forms a Banach space, with the norm: 

‖𝑥‖ℓ𝑝 = (∑  

𝑘

  |𝑥𝑘|
𝑝)

1/𝑝

. 

A Banach space 𝔛 is called a BK-space if the map that takes a sequence to its 𝑛-th term, 𝑥 ↦ 𝑥𝑛, is 

continuous for every 𝑛. Examples include ℓ𝑝 and ℓ∞. Given two sequence spaces 𝔛 and 𝔜, and an infinite real 

matrix 𝐴 = (𝑎𝑛𝑘), we denote the 𝑛-th row as 𝐴𝑛. The matrix 𝐴 maps 𝔛 to 𝔜 if for every sequence 𝑥 = (𝑥𝑘), the 

sequence 

𝐴𝑥 = {𝐴𝑛𝑥}𝑛=0
∞  with 𝐴𝑛𝑥 =∑  

𝑘

 𝑎𝑛𝑘𝑥𝑘 (1) 

belongs to 𝔜. The domain of 𝐴 is the set 𝔛𝐴 = 𝑥 ∈ 𝜔:𝐴𝑥 ∈ 𝔜. The notation (𝔛,𝔜) designates the family of 

all matrices 𝐴 mapping from 𝔛 to 𝔜. Thus, 𝐴 ∈ (𝔛,𝔜) precisely when the series in equation (1) converges for 

every 𝑛 ∈ ℕ and each 𝑥 ∈ 𝔛, which guarantees that 𝐴𝑥 ∈ 𝔜 for all 𝑥 ∈ 𝔛. 

Earlier, (Erdem et al., 2024) developed the Motzkin matrix spaces 𝑐(ℳ) and 𝑐0(ℳ), revealing their 

internal structure and introducing the concept of the Motzkin core. Subsequently, (Demiriz et al., 2025) 

introduced the BK-spaces ℓ𝑝(𝐺) and ℓ∞(𝐺) using generalized Motzkin matrices, establishing their basis 

properties. Based on these findings, (Erdem, 2024a) explored ℓ𝑝(ℳ) spaces along with compact operators, 

while (Erdem, 2024b) extended the theory to Schröder–Catalan matrix spaces with similar results. 

 

2. Pell-Lucas Matrix Operator and Pell-Lucas Sequence Spaces 

Pell sequence is historically linked to the English mathematician John Pell (1611–1685), while its 

companion sequence, known as the Pell–Lucas sequence, is associated with the work of the French 

mathematician Édouard Lucas (1842–1891). Comprehensive studies of these sequences are available in 

(Horadam, 1994; Bicknell, 1975; Dasdemir, 2011). It was demonstrated in (Dasdemir, 2011; Ercolano, 1979) 

that Pell numbers can be expressed in matrix form. In addition, Atabey et al. (Atabey et al., 2025) introduced a 

sequence space generated by Pell numbers. Both the Pell and Pell–Lucas sequences possess well-known 

recursive characterizations, among several other equivalent definitions. In particular, the Pell–Lucas numbers 

satisfy the recurrence relation 
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𝜆𝑘 = 2𝜆𝑘−1 + 𝜆𝑘−2 

with initial values 𝜆0 = 2, 𝜆1 = 2. According to this formula, the first few Pell-Lucas numbers are 

2, 2, 6, 14, 34, 82, 198,478,…. We next examine for the negative Pell-Lucas sequence, defined by 𝜆−𝑘 =

(−1)𝑘𝜆𝑘}. 

We can easily derive the relation 

∑ 

𝑘

𝑠=0

 𝜆𝑠 =
3𝜆𝑘 + 𝜆𝑘−1

2
(2) 

For a nonnegative integer 𝑘, let 𝜆𝑘 represent the 𝑘-th Pell-Lucas number. Consider the matrix Θ = (Θ𝑛𝑘), 

defined by 

Θ𝑛𝑘 = {

2𝜆𝑘
3𝜆𝑛 + 𝜆𝑛−1

0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

 

where 𝑛, 𝑘 = 1,2,…. 

Θ =

[
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 …
4

8

4

8
0 0 0 0 …

4

20

4

20

12

20
0 0 0 …

4

48

4

48

12

48

28

48
0 0 …

4

116

4

116

12

116

28

116

68

116
0 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]
 
 
 
 
 
 
 
 
 

. 

It is obvious that Θ is triangular. Therefore, the Θ-transform of a sequence 𝑏′ = (𝑏𝑘
′ ) is expressed as 

Ω𝑛
′ = (Θ𝑏′)𝑛 =

2∑  𝑛
𝑘=0  𝜆𝑘𝑏𝑘

′

3𝜆𝑛 + 𝜆𝑛−1
. (3) 

Lemma 2.1. (Peterson, 1998)  An infinite matrix ℬ = (𝑏𝑛,𝑘) qualifies as regular if and only if each of the 

conditions listed below is satisfied. 

(a) sup
𝑛∈ℕ

 ∑
𝑘
 |𝑏𝑛𝑘| < ∞; 

(b) lim
𝑛→∞

 ∑
𝑘
 𝑏𝑛𝑘 = 1; 

(c) lim
𝑛→∞

 𝑏𝑛𝑘 = 0. 
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Theorem 2.2.  Pell-Lucas matrix Θ = (Θ𝑛𝑘) is regular. 

Proof. We have 

∑ 

𝑘

|Θ𝑛,𝑘| =∑  

𝑘

Θ𝑛,𝑘 =∑  

𝑛

𝑘=0

2𝜆𝑘
3𝜆𝑛 + 𝜆𝑛−1

= 1 

    ∴ lim
𝑛→∞

 ∑  𝑘 Θ𝑛,𝑘 = 1, hence the condition (b). Additionally, condition (a) is satisfied easily. 

Again, lim
𝑛→∞

 Θ𝑛,𝑘 = lim
𝑛→∞

 
2𝜆𝑘

3𝜆𝑛+𝜆𝑛−1
= 2𝜆𝑘 lim

𝑛→∞
 

1

3𝜆𝑛+𝜆𝑛−1
= 0, which satisfies condition (c). 

 

3. Pell-Lucas sequence spaces 

We now introduce the Pell-Lucas sequence spaces 𝑐(Θ)  and 𝑐0(Θ). A sequence belongs to one of these 

spaces if and only if its Θ-transform lies in the respective classical sequence space 𝑐 or 𝑐0. 

𝑐(Θ) = {ℎ = (ℎ𝑘) ∈ 𝜔: lim
𝑛→∞

 
2𝜆𝑘

3𝜆𝑛 + 𝜆𝑛−1
ℎ𝑘   exists} (1 ≤ 𝑝 < ∞);

𝑐0(Θ)= ℎ = (ℎ𝑘) ∈ 𝜔: lim
𝑛→∞

 
2𝜆𝑘

3𝜆𝑛 + 𝜆𝑛−1
ℎ𝑘 = 0.

 

We can express 𝒢(Θ) as 𝒢Θ, where 𝒢 denotes any of the spaces 𝑐, 𝑐0. 

Theorem 3.1.  The spaces 𝑐0(Θ) and 𝑐(Θ) are BK-spaces with the norm defined by 

 

‖𝑏′‖𝑐0(Θ) = ‖𝑏
′‖𝑐(Θ) = sup

𝑛∈ℕ
 |(Θ𝑏′)𝑛| 

Proof. The proof is straightforward from Theorem 4.3.12 of Wilansky (Wilansky, 1984). 

Theorem 3.2.  𝑐0(Θ) ≅ 𝑐0 and 𝑐(Θ) ≅ 𝑐. 

Proof. We define the mapping as follows: 

𝒯: 𝑐0(Θ) → 𝑐0 such that  𝒯(𝑏′) = Θ𝑏′. 

From the result 𝒯(𝑏′) = 𝜃 ⟹ 𝑏′ = 0, where 𝜃 is the zero element of 𝑐0(Θ). This proves the injectivity of the 

mapping 𝒯. Furthermore, let Ω′ ∈ ℓ∞  and define the sequence 𝑏′ = (𝑏𝑘
′ ) by 

𝑏𝑘
′ = ∑  

𝑘

𝑙=𝑘−1

  (−1)𝑘−𝑙 
3𝜆𝑙 + 𝜆𝑙−1

2𝜆𝑘
Ω𝑙
′ , (𝑘 ∈ ℕ). (4) 
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Then 

lim
𝑘→∞

 (Θ𝑏′)𝑘  = lim
𝑘→∞

 (∑  

𝑘

𝑙=0

 
2𝜆𝑙

3𝜆𝑘 + 𝜆𝑘−1
𝑏𝑙
′)

 = lim
𝑘→∞

 (∑  

𝑘

𝑙=0

 
2𝜆𝑙

3𝜆𝑘 + 𝜆𝑘−1
∑  

𝑙

𝑗=𝑙−1

  (−1)𝑙−𝑗
3𝜆𝑙 + 𝜆𝑙−1

2𝑘𝑙
Ω𝑙
′)

 = lim
𝑘→∞

 Ω𝑘
′

 = 0.

 

Therefore, 𝑏′ ∈ 𝑐0(Θ). Thus, 𝒯 is surjective and preserves the norm. Consequently, 𝑐0(Θ) ≅ 𝑐0. Other one can 

be done in similar way. 

Theorem 3.3.  The inclusions 𝑐0 ⊂ 𝑐0(Θ) and 𝑐 ⊂ 𝑐(Θ) are strict. 

Proof. Given that the matrix Θ is regular, the inclusions arise naturally. To establish their strictness, consider the 

sequence 𝑏′ = (1,0,1,0,… ). We can compute the following for this sequence 

(Θ𝑏′)𝑛 =∑  

𝜇

𝜆=0

2𝜆𝑘
3𝜆𝑛 + 𝜆𝑛−1

𝑏𝜆
′ =

2

3𝜆𝑛 + 𝜆𝑛−1
(𝜆0 + 𝜆1 +⋯+ 𝜆𝜇), where 𝜇 ∈ ℕ. 

This expression converges, implying that 𝑏′ ∈ 𝑐(Θ) ∖ 𝑐. An analogous approach can be utilized to prove the 

other case. 

Definition 3.4.  A sequence 𝑧 = (𝑧𝑛) in a normed space (𝑍, ‖ ⋅ ‖𝑍) is defined as a Schauder basis if, for every 

vector 𝑤 ∈ 𝑍, there exists a unique sequence of scalars (𝑐𝑛) such that the following holds 

lim
𝑛→∞

 ‖𝑤 −∑  

𝑛

𝑛=0

  𝑐𝑛𝑧𝑛‖

𝑍

= 0. 

The mapping 𝑘: 𝒢(Θ) → 𝒢, defined in the proof of the previous theorem, establishes an isomorphism 

between these two spaces. Consequently, the preimage of the basis {𝑒(𝑘)}𝑘∈ℕ in 𝒢 serves as a corresponding 

basis for the newly constructed sequence space 𝒢(Θ).  

Hence, we arrive at the following conclusion: 

Theorem 3.5.  Consider the sequence 𝑏(𝑘) = (𝑏𝑛
(𝑘)) define for each fixed 𝑘 ∈ ℕ as follows: 

𝑏𝑛
(𝑘) = {

(−1)𝑛−𝑘(3𝜆𝑘 + 𝜆𝑘−1)

2𝜆𝑛
 if 𝑛 − 1 ≤ 𝑘 ≤ 𝑛,

0 if 0 ≤ 𝑘 < 𝑛 − 1 or 𝑘 > 𝑛.
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Then we have the following results 

Corollary 3.6.  The sequence spaces 𝑐0(Θ) and 𝑐(Θ) are separable. 

Proof. The conclusion follows immediately from Theorem 3.1 and Theorem 3.5. 

 

4. 𝛼−,𝛽−, 𝛾 − duals 

We identify the 𝛼 −, 𝛽 −, and 𝛾 − duals of the spaces 𝑐0(Θ) and 𝑐(Θ). Some key results from Stielglitz and 

Tietz (1977) will be summarized without proofs, as they are crucial for our discussion. 

Lemma 4.1.  For 1 < 𝑝 ≤ ∞, 𝒜 = (𝑎𝑛𝑘) ∈ (𝑐0: ℓ1) = (𝑐: ℓ1) iff 

sup
𝐸∈𝐸0

 ∑ |∑  

𝑛∈𝐸

𝑎𝑛𝑘|

∞

𝑘=1

< ∞. 

Lemma 4.2.  For 1 < 𝑝 < ∞, 𝒜 = (𝑎𝑛𝑘) ∈ (𝑐0: 𝑐) iff 

lim
𝑛→∞

 𝑎𝑛𝑘   exists,  ∀𝑘 ∈ ℕ; (5) 

sup
𝑛∈ℕ

 ∑  

∞

𝑘=1

  |𝑎𝑛𝑘| < ∞. (6) 

Lemma 4.3.  𝒜 = (𝑎𝑛𝑘) ∈ (𝑐: 𝑐) iff 

sup
𝑛∈ℕ

 ∑  

∞

𝑘=1

|𝑎𝑛𝑘| < ∞ 

lim
𝑛→∞

 𝑎𝑛𝑘  exists,  ∀𝑘 ∈ ℕ; 

 and lim
𝑛→∞

 ∑  

𝑘

𝑎𝑛𝑘 exists. 

Lemma 4.4.  𝒜 = (𝑎𝑛𝑘) ∈ (𝑐0: ℓ∞) = (𝑐: ℓ∞) iff 

sup
𝑛∈ℕ

 ∑  

∞

𝑘=1

|𝑎𝑛𝑘| < ∞. 

Theorem 4.5.  Consider the infinite matrix 𝔅′ = (𝑚𝑛𝑘
′ ) defined by 
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𝑚𝑛𝑘
′ = {

(−1)𝑛−𝑘
(3𝜆𝑘 + 𝜆𝑘−1)

2𝜆𝑛
𝑠𝑛 , if 𝑛 − 1 ≤ 𝑘 ≤ 𝑛

0, if 𝑘 > 𝑛

 

and the set ℨ1 as 

ℨ1 = 𝑠 = (𝑠𝑘) ∈ 𝜔: sup
𝐸∈𝐸0

 ∑  

∞

𝑘=1

|∑  

𝑛∈𝐸

𝑚𝑛𝑘
′ | < ∞ 

then 

[𝑐0(Θ)]
𝛼 = [𝑐(Θ)]𝛼 = ℨ1. 

Proof. By (4), we get 

𝑠𝑛𝑏𝑛
′ = 𝑠𝑛 ( ∑  

𝑛

𝑘=𝑛−1

  (−1)𝑛−𝑘
(3𝜆𝑘 + 𝜆𝑘−1)

2𝜆𝑛
Ω𝑘
′ ) 

= ∑  

𝑛

𝑘=𝑛−1

((−1)𝑛−𝑘
(3𝜆𝑘 + 𝜆𝑘−1)

2𝜆𝑛
Ω𝑘
′ 𝑠𝑛) 

= 𝔅𝑛
′ Ω′,  ∀𝑛 ∈ ℕ.                                                                                                                    (7) 

 

Therefore, by (7), we get 𝑠 ∈ [𝑐0(Θ)]
𝛼  𝑜𝑟  [𝑐(Θ)]𝛼  ⟺  𝔅′ ∈ (𝑐0, ℓ1) = (𝑐, ℓ1). Thus from Lemma 4.1, we 

have [𝑐0(Θ)]
𝛼 = [𝑐(Θ)]𝛼 = ℨ1. Hence, the result is proved. 

Theorem 4.6.  Consider the sets ℨ2, ℨ3, ℨ4 as : 

ℨ2 = {𝑠 = (𝑠𝑘) ∈ 𝜔:∑  

𝑘

  |Δ (
𝑠𝑘
𝜆𝑘
) (
3𝜆𝑘 + 𝜆𝑘−1

2
)| < ∞} ; 

ℨ3 = {𝑠 = (𝑠𝑘) ∈ 𝜔: |sup
𝑘
 
3𝜆𝑘 + 𝜆𝑘−1

2𝜆𝑘
𝑠𝑘| < ∞} ; 

and 

ℨ4 = {𝑠 = (𝑠𝑘) ∈ 𝜔: lim
𝑘→∞

 
3𝜆𝑘 + 𝜆𝑘−1

2𝜆𝑘
𝑠𝑘 exists}, 

where 

Δ (
𝑠𝑘
𝜆𝑘
) (
3𝜆𝑘 + 𝜆𝑘−1

2
) = (

𝑠𝜆
𝜆𝑘
−
𝑠𝑘+1
𝜆𝑘+1

) (
3𝜆𝑘 + 𝜆𝑘−1

2
). 



S. Shah                    On the domain of the Pell-Lucas matrix in the spaces 𝑐 and 𝑐0 

____________________________________________________________________________________________________________ 

98 

 

Then, 

[𝑐0(Θ)]
𝛽 = ℨ2 ∩ ℨ3, 𝑎𝑛𝑑 [𝑐(Θ)]𝛽 = ℨ2 ∩ ℨ4. 

Proof. Let (𝑠𝑘) ∈ 𝜔 and define 𝑏′= (𝑏𝑘
′ ) according to (4). Now, consider the equality 

∑ 

𝑛

𝑘=0

  𝑠𝑘𝑏𝑘
′ =∑  

𝑛

𝑘=0

  𝑠𝑘 ( ∑  

𝑘

𝑙=𝑘−1

  (−1)𝑘−𝑙
3𝜆𝑙 + 𝜆𝑙−1

2𝜆𝑘
Ω𝑙
′) 

= ∑  

𝑛−1

𝑘=0

  (
𝑠𝑘
𝜆𝑘
−
𝑠𝑘+1
𝜆𝑘+1

)(
3𝜆𝑘 + 𝜆𝑘−1

2
)Ω𝑘

′ +
3𝜆𝑛 + 𝜆𝑛−1

2𝜆𝑛
𝑠𝑛Ω𝑛

′  

 = ∑  

𝑛−1

𝑘=0

 Δ (
𝑠𝑘
𝜆𝑘
) (
3𝜆𝑘 + 𝜆𝑘−1

2
)Ω𝑘

′ +
3𝜆𝑛 + 𝜆𝑛−1

2𝜆𝑛
𝑠𝑛Ω𝑛

′                                                                        (8) 

= (𝔖′Ω′)𝑛 for each 𝑛 ∈ ℕ,                                                                                                                     (9) 

  

where the matrix 𝔖′ = (𝔖′𝑛𝑘) is 

𝔖′𝑛𝑘 =

{
 
 
 

 
 
 (
𝑠𝑘
𝜆𝑘
−
𝑠𝑘+1
𝜆𝑘+1

)(
3𝜆𝑘 + 𝜆𝑘−1

2𝜆𝑘
) if 𝑘 < 𝑛,

(
3𝜆𝑛 + 𝜆𝑛−1

2𝜆𝑛
) if 𝑘 = 𝑛,

0 if 𝑘 > 𝑛.

 

It is evident that the columns of the matrix 𝔖′ are convergent, as we have 

lim
𝑛→∞

 𝔖′𝑛𝑘 = (
𝑠𝑘
𝜆𝑘
−
𝑠𝑘+1
𝜆𝑘+1

) (
3𝜆𝑘 + 𝜆𝑘−1

2
) . (10) 

By (9) we have 𝑠 ∈ [𝑐0(Θ)]
𝛽  ⟺  𝔖′ ∈ (𝑐0, 𝑐). 

Hence by (8), (10) and Lemma 4.2, we have 

∑ 

𝑘

| lim
𝑛→∞

 Δ (
𝑠𝑘
𝜆𝜆
) (
3𝜆𝑘 + 𝜆𝑘−1

2
)|
𝑡′

< ∞ 

and 

sup
𝑘
  |
3𝜆𝑘 + 𝜆𝑘−1

2
| < ∞. 
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Therefore, 

[𝑐0(Θ)]
𝛽 = ℨ2 ∩ ℨ3. 

Similarly, the 𝛽-dual of the space 𝑐(Θ) can be determined using Lemma 4.3 and equation (10). 

Theorem 4.7.  [𝑐0(Θ)]
𝛾 = [𝑐(Θ)]𝛾 = ℨ2 ∩ ℨ3. 

Proof. The result can be derived similarly as the previous theorem, this time using Lemma 4.4. 

 

5. Characterization of Matrix Classes  

Now, we explore the characteristics of the matrix classes (𝑐0(Θ),𝒢) and (𝑐(Θ), 𝒢), where 𝒢 can be any of the 

spaces ℓ∞, 𝑐, or 𝑐0. For convenience, we denote 

𝑐𝑛,𝑘 = (
𝑎𝑛,𝑘
𝜆𝑘

−
𝑎𝑛,𝑘+1
𝜆𝑘+1

) ⋅
3𝜆𝑘 + 𝜆𝑘−1

2
(11) 

for all 𝑛, 𝑘 ∈ ℕ. Additionally, if we have 𝑏′, Ω′ ∈ 𝜔 such that Ω′ = Θ𝑏′, we can express the following 

relationship based on equation (8) 

∑ 

𝜉

𝑘=0

 𝑎𝑛,𝑘𝑏𝑘
′ = ∑  

𝜉−1

𝑘=0

  𝑐𝑛,𝑘Ω𝑘
′ +

3𝜆𝜉 + 𝜆𝜉−1

2𝜆𝜉
𝑎𝑛,𝜉Ω𝜉

′  (𝑛, 𝜉 ∈ ℕ). (12) 

Next, we outline several conditions to consider as we move forward 

sup
𝑛
 ∑  𝑘   |𝑐𝑛,𝑘|  < ∞, (13)

(
3𝜆𝑘+𝜆𝑘−1

2𝜆𝑘
𝑎𝑛,𝑘)

𝑘=0

∞

 ∈ ℓ∞ for every 𝑛 ∈ ℕ, (14)

(
3𝜆𝑘+𝜆𝑘−1

2𝜆𝑘
𝑎𝑛,𝑘)

𝑘=0

∞

 ∈ 𝑐 for every 𝑛 ∈ ℕ, (15)

sup
𝑛
 |∑  𝑘  𝑎𝑛,𝑘|  < ∞, (16)

lim
𝑛→∞

 |∑  𝑘  𝑎𝑛,𝑘|  = 𝑎 for all 𝑛, 𝑘 ∈ ℕ, (17)

lim
𝑛→∞

 (∑  𝑘  𝑎𝑛,𝑘)  = 0 for all 𝑛, 𝑘 ∈ ℕ, (18)

lim
𝑛→∞

 𝑐𝑛,𝑘  = 𝑎̃𝑘 for 𝑘 ∈ ℕ, (19)

lim
𝑛→∞

 𝑐𝑛,𝑘  = 0 for 𝑘 ∈ ℕ. (20)

  

Using results from (Peterson, 1966) along with Theorem 4.6 and equation (12), we can derive the following 

conclusions: 

Theorem 5.1.  We have 

(1). The matrix 𝒜 = (𝑎𝑛,𝑘) ∈ (𝑐0(Θ), ℓ∞) ⇔ conditions (13) and (14) are satisfied. 

(2). The matrix 𝒜 = (𝑎𝑛,𝑘) ∈ (𝑐0(Θ), 𝑐0) ⇔ conditions (13), (14), and (20) hold. 
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(3). The matrix 𝒜 = (𝑎𝑛,𝑘) ∈ (𝑐0(Θ), 𝑐) ⇔ conditions (13), (14), and (19) hold. 

Theorem 5.2.   

(1). The matrix 𝒜 = (𝑎𝑛,𝑘) ∈ (𝑐(Θ), ℓ∞) ⇔ conditions (13), (15), and (16) are satisfied. 

(2). The matrix 𝒜 = (𝑎𝑛,𝑘) ∈ (𝑐(Θ), 𝑐0) ⇔ conditions (13), (15), (18), and (20) hold. 

(3). The matrix 𝒜 = (𝑎𝑛,𝑘) ∈ (𝑐(Θ), 𝑐) ⇔ conditions (13), (15), (17), and (19) are hold. 

 

6. Hausdorff measure of noncompactness 

In this section, we derive the necessary and sufficient conditions for an operator to be compact from 𝑐0(Θ) 

to a space ℋ ∈ {𝑐0, 𝑐, ℓ∞, ℓ1}, using the Hausdorff measure of noncompactness. To begin, we revisit key results 

and notations that are essential to our analysis. For further details on noncompactness, refer to (Dağlı, 2022; 

Malkowsky & Rakočević, 2000; Rakočević, 1998; Demiriz & Erdem, 2024). 

Lemma 6.1.  Let ℓ∞
𝛽
= 𝑐𝛽 = 𝑐0

𝛽
= ℓ1. Moreover, for 𝒢 ∈ {ℓ∞, 𝑐, 𝑐0}, the following holds 

‖𝒢‖𝒢
∗ = ‖𝒢‖ℓ1 . 

Lemma 6.2. (see Theorem 4.2.8 of (Wilansky, 2000))  Let 𝒢 and ℋ be two BK-spaces. Then, the space (𝒢,ℋ) 

is included in 𝐵(𝒢,ℋ). This means that for every operator 𝐴 in (𝒢,ℋ), there exists a corresponding linear 

operator ℒ𝐴 in 𝐵(𝒢,ℋ) defined by ℒ𝐴𝑔 = 𝐴𝑔 for all 𝑔 ∈ 𝒢. 

 

Lemma 6.3. (see Theorem 2.15 of (Malkowsky & Rakočević, 2000))  Consider a bounded set 𝑄 ⊂ 𝑐0, and 

introduce the operator 𝑃𝑠: 𝑐0 → 𝑐0 defined as follows: 

𝑃𝑠(𝑔0, 𝑔1, 𝑔2, … ) = (𝑔0, 𝑔1, 𝑔2, … , 𝑔𝑠, 0,0,… )  for any 𝑔 = (𝑔𝑘) ∈ 𝑐0. 

Then, we have 

𝜒(𝑄) = lim
𝑠→∞

 (sup
𝑔∈𝑄

 ‖(𝐼 − 𝑃𝑠)(𝑔)‖), 

where 𝐼 represents the identity operator on 𝑐0. 

Lemma 6.4. (see Theorem 1.23 of (Malkowsky & Rakočević, 2000))  Let 𝒢 be a BK space and 𝜙 ⊂ 𝒢. If 𝐴  ∈ 

(𝒢,ℋ), then the norm satisfies 

‖ℒ𝐴‖ = ‖𝐴‖(𝒢,ℋ) = sup
𝑛
 ‖𝐴𝑛‖𝒢

∗ < ∞. 

Lemma 6.5. (see Theorem 3.7 of (Mursaleen & Noman, 2010))  Let 𝒢 be a BK-space that contains a non-empty 

set. The following statements are true: 



S. Shah                    On the domain of the Pell-Lucas matrix in the spaces 𝑐 and 𝑐0 

____________________________________________________________________________________________________________ 

101 

 

(a) If 𝐴 ∈ (𝒢, 𝑐0), then 

‖ℒ𝐴‖𝜒 = lim sup
𝑛→∞

 ‖𝐴𝑛‖𝒢
∗ , 

and ℒ𝐴 is compact ⇔ 

lim
𝑛→∞

 ‖𝐴𝑛‖𝒢
∗ = 0. 

(b) If 𝒢 has AK and 𝐴 ∈ (𝒢, 𝑐), then 

1

2
lim sup
𝑛→∞

 ‖𝐴𝑛 − 𝑎‖𝒢
∗ ≤ ‖ℒ𝐴‖𝜒 ≤ lim sup

𝑛→∞
 ‖𝐴𝑛 − 𝑎‖𝒢

∗ , 

and ℒ𝐴 is compact ⇔ 

lim
𝑛→∞

 ‖𝐴𝑛 − 𝑎‖𝒢
∗ = 0, 

where 𝑎 = (𝑎𝑘) with 𝑎𝑘 = lim
𝑛→∞

 𝑎𝑛𝑘  for all 𝑘 ∈ ℕ. 

(c) If 𝐴 ∈ (𝒢, ℓ∞), then 

0 ≤ ‖ℒ𝐴‖𝜒 ≤ lim sup
𝑛→∞

 ‖𝐴𝑛‖𝒢
∗ , 

and ℒ𝐴 is compact if 

lim
𝑛→∞

 ‖𝐴𝑛‖𝒢
∗ = 0. 

For the rest of this paper, 𝐸0 denotes the subset of 𝐸 consisting of elements of ℕ that are greater than 𝑘. 

Lemma 6.6. (see Theorem 3.11 of (Mursaleen & Noman, 2010))  Let 𝒢 be a BK-space containing a non-empty 

set. If 𝐴 ∈ (𝒢, ℓ1), then 

lim
𝑘→∞

  sup
𝐸∈𝐸0

 (∑  

𝑛∈𝐸

 ‖𝐴𝑛‖𝒢
∗) ≤ ‖ℒ𝐴‖𝜒 ≤ 4 ⋅ lim

𝑘→∞
  sup
𝐸∈𝐸0

 (∑  

𝑛∈𝐸

 ‖𝐴𝑛‖𝒢
∗), 

and 

ℒ𝐴 is compact ⇔ lim
𝑘→∞

 (sup
𝐸∈𝐸0

 ∑  

𝑛∈𝐸

 ‖𝐴𝑛‖𝒢
∗) = 0. 
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Lemma 6.7.  Consider a sequence space 𝒢, with matrices 𝐴 = (𝑎𝑛𝑘) and 𝔄 = (𝑐𝑛𝑘) as defined in (11). If 𝐴 is 

included in the space (𝑐0(Θ), 𝒢), then it follows that 𝔄 is also part of (𝑐0, 𝒢). Additionally, for any 𝑔 belonging 

to 𝑐0(Θ), there exists a sequence 𝑦̃ that corresponds to 𝑔 such that 𝐴𝑔 = 𝔄𝑦̃. 

 

Theorem 6.8.  The following statements hold: 

(a) 𝐴 ∈ (𝑐0(Θ), 𝑐0), then 

‖ℒ𝐴‖𝜒 = lim sup
𝑛→∞

 ∑  

𝑘

|𝑐𝑛𝑘|. 

(b) If 𝐴 ∈ (𝑐0(Θ), 𝑐), then 

1

2
lim sup
𝑛→∞

 ∑  

𝑘

|𝑐𝑛𝑘 − 𝛼𝑘| ≤ ‖ℒ𝐴‖𝜒 ≤ lim sup
𝑛→∞

 ∑  

𝑘

|𝑐𝑛𝑘 − 𝛼𝑘|, 

where 𝛼𝑘 = lim
𝑛→∞

 𝑐𝑛𝑘 . 

(c) If 𝐴 ∈ (𝑐0(Θ), ℓ∞), then 

0 ≤ ‖ℒ𝐴‖𝜒 ≤ lim sup
𝑛→∞

 ∑  

𝑘

|𝑐𝑛𝑘|. 

(d) If 𝐴 ∈ (𝑐0(Θ), ℓ1), then 

lim
𝑠→∞

 ‖𝐴‖(𝑐0(Θ),ℓ1)
[𝑘]

≤ ‖ℒ𝐴‖𝜒 ≤ 4lim
𝑠→∞

 ‖𝐴‖(𝑐0(Θ),ℓ1)
[𝑘]

, 

where 

‖𝐴‖(𝑐0(Θ),ℓ1)
[𝑘]

= sup
𝐸∈𝐸0

 ∑  

𝑘

|∑  

𝑛∈𝐸

  𝑐𝑛𝑘| , 𝑘 ∈ ℕ. 

Proof. (a) Let 𝐴 ∈ (𝑐0(Θ), 𝑐0). It can be observed that 

||𝐴𝑛||𝑐0(Θ)
∗ = ||𝔄𝑛||𝑐0

∗ = ||𝔄𝑛||ℓ1 =∑ 

𝑘

|𝑐𝑛𝑘| 

for 𝑛 ∈ ℕ. Thus, using Part (a) of Lemma 6.5, we conclude that 
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‖ℒ𝐴‖𝜒 = lim sup
𝑛→∞

 ∑  

𝑘

|𝑐𝑛𝑘|. 

(b) Notice that 

||𝔄𝑛 − 𝛼𝑘||𝑐0
∗ = ||𝔄𝑛 − 𝛼𝑘||ℓ1 =∑ 

𝑘

  |𝑐𝑛𝑘 − 𝛼𝑘| (21) 

For each 𝑛 ∈ ℕ, if 𝐴 ∈ (𝑐0(Θ), 𝑐), then by Lemma 6.7, we obtain that 𝔄 ∈ (𝑐0, 𝑐). Using Part (b) of Lemma 6.5, 

we can infer that 

1

2
lim sup
𝑛→∞

 ||𝔄𝑛 − 𝛼||𝑐0
∗ ≤ ‖ℒ𝐴‖𝜒 ≤ lim sup

𝑛→∞
 ||𝔄𝑛 − 𝛼||𝑐0

∗ , 

Now, using the earlier expression (21), yields 

1

2
lim sup
𝑛→∞

 ∑  

𝑘

|𝑐𝑛𝑘 − 𝛼𝑘| ≤ ‖ℒ𝐴‖𝜒 ≤ lim sup
𝑛→∞

 ∑  

𝑘

|𝑐𝑛𝑘 − 𝛼𝑘|, 

which is the required result. 

(c) This part is proven similarly to Parts (a) and (b), except that we use Part (c) of Lemma 6.5 instead of Part 

(a). 

(d) Note that 

‖∑  

𝑛∈ℕ

 𝔄𝑛‖

𝑐0

= ‖∑  

𝑛∈ℕ

 𝔄𝑛‖

ℓ1

=∑ 

𝑘

  |∑  

𝑛∈ℕ

  𝑐𝑛𝑘| . (22) 

Assuming 𝐴 ∈ (𝑐0(Θ), ℓ1), then by Lemma 6.7, we have 𝔄 ∈ (𝑐0, ℓ1). Consequently, by applying Lemma 6.6, 

we obtain 

lim
𝑘→∞

 (sup
𝐸∈𝐸0

 ‖∑  

𝑛∈𝐸

 𝔄𝑛‖

𝑐0

∗

) ≤ ‖ℒ𝐴‖𝜒 ≤ 4 ⋅ lim
𝑘→∞

 (sup
𝐸∈𝐸0

 ‖∑  

𝑛∈ℕ

 𝔄𝑛‖

𝑐0

∗

), 

by using the earlier equation (22), reduces to 

lim
𝑘→∞

 ‖𝐴‖(𝑐0(Θ),ℓ1)
[𝑘]

≤ ‖ℒ𝐴‖𝜒 ≤ 4 lim
𝑘→∞

 ‖Ω‖(𝑐0(Θ),ℓ1)
[𝑘]

, 
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as desired. 

Corollary 6.9.  The following assertions are true: 

(a) Let 𝐴 ∈ (𝑐0(Θ), 𝑐0), then ℒ𝐴 is compact ⇔ 

lim
𝑛→∞

 ∑  

𝑘

|𝑐𝑛𝑘| = 0. 

(b) Let 𝐴 ∈ (𝑐0(Θ), 𝑐), then ℒ𝐴 is compact ⇔ 

lim
𝑛→∞

 (∑  

𝑘

  |𝑐𝑛𝑘 − 𝛼𝑘|) = 0. 

(c) Let 𝐴 ∈ (𝑐0(Θ), ℓ∞), then ℒ𝐴 is compact if 

lim
𝑛→∞

 ∑  

𝑘

|𝑐𝑛𝑘| = 0. 

(d) Let 𝐴 ∈ (𝑐0(Θ), ℓ1), then ℒ𝐴 is compact ⇔ 

lim
𝑘→∞

 (sup
𝐸∈𝐸0

 (∑  

𝑘

  |∑  

𝑛∈ℕ

  𝑐𝑛𝑘|)) = 0. 

 

7. Conclusion 

Research on Pell-Lucas numbers has traditionally focused on fundamental aspects such as identities, 

recurrence relations, generating functions, Binet’s formula, and special transformations, as well as their 

connections with hyperbolic quaternions (Horadam, 1994; Aydin, 2022). In this work, we extend the study by 

introducing the Pell-Lucas sequence space and conducting a detailed analysis of the spaces 𝑐(Θ) and 𝑐0(Θ). The 

study further explores the fundamental properties and inclusion relationships of these sequence spaces, 

establishes a Schauder basis, and determines their 𝛼-, 𝛽-, and 𝛾-duals. Our investigation also emphasizes the 

measure of non-compactness in 𝑐0(Θ). We are hoping that the results presented here will be useful for future 

research in this area. Further studies may extend this work to the domain of the Pell-Lacus matrix in other 

sequence spaces such as Maddox’s spaces, 𝑐𝑠, and 𝑏𝑠. 

  

Acknowledgments: I am grateful to the reviwers for their careful reading and valuable suggestions for improvement of the article. 



S. Shah                    On the domain of the Pell-Lucas matrix in the spaces 𝑐 and 𝑐0 

____________________________________________________________________________________________________________ 

105 

 

Availability of Data and Materials: Not applicable. 

Ethical Declarartions: Not applicable. 

Conflicts of Interest: There is no conflict of interest. 

Funding: Not applicable. 

Authors' Contributions: The author is the sole contributor to this article. 

Generative AI Declaration: The author declare that generative artificial intelligence tools were not used to generate scientific 

content, results, or conclusions in this manuscript. Any use of AI tools, if applicable, was limited to language editing and did not affect 

the scientific integrity of the work. 

 

 

References: 

Aydin, F. T. (2022). Dual-hyperbolic Pell quaternions. Journal of Discrete Mathematical Sciences and 

Cryptography, 25 (5), 1321-1334. 

Atabey, K.İ, Kalita, H., & Et, M. (2025). On Pell Sequence Spaces. Palestine Journal of Mathematics, 14 (1), 

1-15. 

Bicknell, M. (1975). A primer on the Pell sequence and related sequences. The Fibonacci Quarterly, 13 (4), 

345-349. 

Dasdemir, A. (2011). On the Pell, Pell-Lucas and modified Pell numbers by matrix method. Applied 

Mathematical Sciences, 5 (64), 3173-3181. 

Dağlı, M.C. (2022). Matrix mappings and compact operators for Schröder sequence spaces. Turkish Journal of 

Mathematics, 46 (6), 2304-2320. 

Demiriz, S.,  & Erdem, S. (2024). Mersenne matrix operator and its application in 𝑝-summable sequence 

space. Communications in Advanced Mathematical Sciences, 7 (1), 42-55. 

Demiriz, S., Şahin, A., & Erdem, S. (2025). Some topological and geometric properties of novel generalized 

Motzkin sequence spaces. Rendiconti del Circolo Matematico di Palermo Series 2, 74 (4), 136. 

Ercolano, J. (1979). Matrix generators of Pell sequences. The Fibonacci Quarterly, 17 (1), 71-77. 

Erdem, S., Demiriz, S., & Şahin, A. (2024). Motzkin sequence spaces and Motzkin core. Numerical 

Functional Analysis and Optimization, 45(4-6), 283-303. 

Erdem, S. (2024a). Compact operators on the new Motzkin sequence spaces. AIMS Mathematics, 9, 24193-

24212. 

Erdem, S. (2024b). Schröder–Catalan Matrix and Compactness of Matrix Operators on Its Associated 

Sequence Spaces. Symmetry, 16(10), 1317. 



S. Shah                    On the domain of the Pell-Lucas matrix in the spaces 𝑐 and 𝑐0 

____________________________________________________________________________________________________________ 

106 

 

Horadam, A. F. (1994). Applications of modified Pell numbers to representations. Ulam Quarterly, 3 (1), 34-

53. 

Malkowsky, E.,  Rakocević, V. (2000). An introduction into the theory of sequence spaces and measures of 

noncompactness. Zbornik radova, 17, 143-234. 

Mursaleen, M., Noman, A. K. (2010). Compactness by the Hausdorff measure of noncompactness. Nonlinear 

analysis: Theory, Methods and Applications, 73 (8), 2541-2557. 

Petersen, G.M. (1966). Regular matrix transformations, 86. McGraw-Hill, London. 

Rakocević, V. (1998). Measures of noncompactness and some applications. Filomat, 12, 87-120.  

Stieglitz, M., & Tietz, H. (1977). Matrixtransformationen von folgenräumen eine ergebnisübersicht. 

Mathematische Zeitschrift, 154(1), 1-16. 

Wilansky, A. (1984). Summability through functional analysis, Vol. 85, North-Holland Publishing Co., 

Amsterdam. Notas de Matemàtica [Mathematical Notes], 91. 


	Research Article
	On the domain of the Pell-Lucas matrix in the spaces 𝒄 and ,𝒄-𝟎.
	Shiva Shah*


