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1. Introduction

The symbol w refers to the linear space of all sequences with real elements and any linear subspace of w is
called as a sequence space. Well-known sequence spaces can be instantiated as the space c¢ of convergent
sequences, the space c, of null sequences, the space £, of bounded sequences and the space £, of absolutely

p-summable sequences. The aforementioned spaces are Banach spaces due to the norms |[|yll, = llyllc =

Iylle, = iuglykl and Ilylle, = Gk [yi|”)™?, where 1 <p < oo, the notation ¥, means i, and N =
€

{1,2,3, ... }. Furthermore, the acronyms cs, cs, and bs refer the all convergent, null, and bounded series' spaces,
respectively. A Banach space wherein each coordinate functional f,, defined by f,(v) =y, exhibits

continuity, is known as a BK-space.
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For an infinite matrix D = (d,x)n ren With real terms, D,, represents the n'™ row of D. The D-transform of

y = (yx) € w, denoted with Dy = (Dy),en, is described as Y., d,.Vx if the series converges. A matrix that

transforms a convergent sequence into a convergent sequence while preserving limit is called as regular.

LetI1,0 c w. If Dy € © for all y € I1, a matrix D is named as matrix transformation between the spaces Il
and © and the family of matrix transformations between I1 and O is indicated by (II: ®). Furthermore, the
domain ®, of D on the space O is describes as

Op ={y € w: Dy € 6} (D
and this is a sequence space, too. We can see in Wilansky (1984) that if © is BK-space and D is triangle, in that
case @ is also BK-space with the norm described as |lylle, = |[Dylle. BK-spaces (or Banach spaces)
formulated through the application of the Euler, Cesaro, Riesz, Difference, A matrices (Altay & Basar, 2002,
2006a, 2006b; Basar & Altay, 2022; Mursaleen & Noman, 2010a; Ng & Lee, 1978; Sengoniil & Basar, 2005),
among others, represent some of the seminal works in this area. More detailed information on this topic can be
found in sources (Basar, 2002; Mursaleen & Basar, 2020).

The notion of defining sequence spaces with triangular matrices obtained by using special integer
sequences is based on the study of Kara and Basarrr (2012) and the authors described Fibonacci sequence
spaces with the help of Fibonacci number sequence. Then, as an application of summability theory
to sequence spaces, some algebraic, topological and geometric properties of new sequence spaces obtained in
studies carried out with similar logic using Tribonacci, Mersenne, Motzkin, Padovan, Catalan, Schréder, Bell,
Leonardo, Lucas and some other sequences (Candan, 2012, 2013, 2015; Dagh, 2023; Dagh & Yaying, 2023;
Demiriz & Erdem, 2024; Ellidokuzoglu & Demiriz, 2018; Erdem et al., 2024; Erdem, 2024a, 2024b;
ilkhan & Kara, 2021; Kara, 2013; Karakas, 2023; Karakas & Karabudak, 2017; Yaying & Hazarika, 2020,
2022; Yaying et al., 2022; Yaying & Kara, 2021) were investigated.

2. Tetranacci numbers, matrix and sequence spaces

The Tetranacci sequence, initially introduced by Feinberg (1963), is elaborated within this discourse. This
sequence, as implied by its nomenclature, is generated through the summation of the preceding four terms.
Represented as (t,,) ey for the n' Tetranacci term, the sequence adheres to the recurrence formula

tp =th—qg tth o +in3tinas
for n > 4, with the sequence initiating from t, =1, t, = 1, t; = 2, and t, = 4. Consequently, the first few
initial terms of the Tetranacci sequence are given as:
1,1,2,4,8,15,29,56,108,208,401,773,---.
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Significant to note from Feinberg's findings are (see (Feinberg, 1963)):

(@  The limit lim in converges to 0.51879006 ....

n-oo th4+1
(b)  Conversely, lim “ approaches 1.9275619 ....
n-oo tp

Furthermore, the sequence satisfies the identity

n

1
z t, = E(tn+4 —tya = 2tpyr — 1)
k=1

as precisely elucidated in Waddill (1992) and Proposition 2.2 of Soykan's work (Soykan, 2019).

For the purpose of this study, it is stipulated that terms bearing non-positive indices are to be considered as
null.

Quite recently, Khan and Meitei (2024) defined the Tetranacci matrix J° and the sequence spaces I1(7") as
the domain of 7 for I1 € {#£,,, £, c,co} and 1 < p < oo. Later, authors proved existence theorem with example
for infinite systems of differential equations in £,(7") after studying these spaces in terms of some properties
such as completeness, isomorphism, inclusion relations, Schauder basis, a-, f- and y-duals and matrix
transformations.

The Tetranacci matrix 7 = (t;x)n ken 1S defined as

( 3t .
, if1<k<n,
t., = { thia — thez — 2tp41 — 1
nk
k 0 , otherwise.

Equivalently, this can be expressed as

1 0 0 0 0
Ll o0
2 2
(RS BN

r_l4 4 2
1111
8 8 4 2
1 1 111
16 16 8 4 2

The T-transform of any y = (y) € w is given by z = (z,,) described by
3

thia = tnez — 241 — 1

Zn = TV = >t (e, @)
k=1
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Lemma 2.1. D = (d,) is regular iff each of the given conditions
(). sup Xy [dnk| < oo,

neN
(||) lim Zk dnk = 1,
n—-oo
(ii).  limd,, =0,
n—oo
holds true.
The Tetranacci matrix is regular because it satisfies the conditions of the lemma just mentioned. That is, the
Tetranacci transform of a convergent sequence converges with the same limit.
The primary objective of this article is to describe to sequence space £,(7) for 0 < p < 1, explain some
properties of the space ¢,(7) and to give the characterization of a certain class of compact operators acting on

£,(T) for 1 < p < oo by the utilization of Hausdorff measure of non-compactness.
3. Some properties and compactness by Hausdorff measure of non-compactness on £, (7")

3.1 The sequence space £,,(7) and some properties
In this section, we describe the sequence space £,,(7) for 0 < p < 1, examine some properties for the cases

0<p<1land1l<p < oo, determine the a —, f — and y —duals of the space £,,(T) for0 <p < 1.

We now define the space £,,(7") (0 < p < 1) by the following way:

p

o)

6T = =Oew )

n=1

n

: Z
tyy
tn+4 n+2 2tn+1 1 ek

k=1

< oo}

Theorem 3.1.1. The space ¢, (7") is complete p-normed sequence space with the p —norm

o)

Wy =D
n=1

n
Yk
thya —thyo — 2tn+1 1;

for0<p<1.

Proof. The result follows immediately due to Wilansky (1984) and the fact that £,, is complete p-normed space

for0 <p <1 and T is atriangle.

Theorem 3.1.2. The space £, () is linearly p-norm isomorphic to the space £, for 0 <p < 1.
Proof. Define the function R:#,(7) — ¢, such that R(y) =Ty for 0 <p < 1. The linearity of R is
straightforward.

The injectivity of R follows from the fact that R(y) = 0 implies y = 0.
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Let us consider z = (z,) € £, and y = (y,) € w such that

k
tiya —tizo — 2t — 1
Vi = z (_1)](_1 i+4 i+2 i+1 z (3)
. 3ty
i=k—-1
with the initial condition y, = z,, for every k > 2. From the relationship
3 n
TV = X
T thea = tniz = 2tp4q — 1 =1 ke

n k

_ 3 Z . Z (—1)k- tiva = tivz — 241 — 1Z
= . — .
tnia = tnaz — 2tnen — 14 3ty ‘

k=1 i=k-1

we see that R is surjective. Moreover, the equality IIyIIQ,p(T) = IITyIIQ,p shows that R is norm preserving. This

completes the proof.

Theorem 3.1.3. £,(7") isn't Hilbert space for 1 < p < coandp # 2.
Proof. Considering y = (1,1,-1,0,0,...) and Z = (1,-3,1,0,0, ...), it follows that Ty = (1,1,0,0,...) and TZ =
(1,—1,0,0, ...). Consequently, one derives that

2
L L 242 3 N
Iy + Z||§p(:r) + |y — Z||§,,(T) =82 pPr=2 (||)’||§p(7) + ||Z||§p(7))-

From this observation, it is evident that the parallelogram law doesn't hold for || - lle,cr) when p # 2, indicating

that £,,(7") isn't Hilbert space for 1 < p < coandp # 2.

Theorem 3.1.4. The inclusion £,(T) c £,(T) isstrictfor 1 < p <s < oo.
Proof. Considering y = (yx) € €,(7) such that Ty € £,,, and acknowledging that £, c £, for 1 < p < s < oo,
it follows that 7'y € . Therefore, one can assert that y = (y;) € £5(T).

The strictness of this inclusion is readily observable from the relation Z = Ty € £\ £,.
Given spaces I1, ® c w, the multiplier set M (I1: ©) is defined as follows:

M(I:©) = {1 = (1,) € w: ly = (A,,,) € O forall (¥,) € N}
Then, the a-, §-, and y-duals of the space IT are given by:

% = M(I: £,),1# = M(I: cs) and 1Y = M(II: bs).
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We now present the following lemmas due to (Gross-Erdmann, 1993; Lascarides & Maddox, 1970), which aid

in characterizing certain matrix classes for determining the duals:

Lemma3.1.5. For0 <p <1,D = (dy) € (£p: £o0) iff

sup |dnk|p < oo, (4)
n,keN

Lemma 3.1.6. For0<p <1,D = (dn) € (£p:c) iff the conditions (4) and
Eldk € C> lim dnk = dk, forall € N
n—oo

hold.
Lemma3.1.7. For0 <p <1, D = (du) € (£p: ) iff
) p
sup sup Z dpr| < oo. (5)
MeX keN
nex
Theorem 3.1.8. Define the set o, by
00 p
0, = {/1 = (Ax) € w: sup sup Z Ikl < oo},
MeX keN
nex

where G = (gnx) is a triangle defined by

((_1)n—k tkra — tkro — 2841 — 1

ifn—1<k<
~ 3t, An fn—1<k<n,
Ink =
k 0 , otherwise.

Then, [€,(7)]" = o, foro <p < 1.
Proof. By considering the relation (2), we derive the following equality:

n

tisa — tias — 2tpq1 — 1
Anyn — An( Z (_1)n—k k+4 k+:23t k+1 Zk)
n
k=n-1
N tiss — trss — 2tgss — 1
— Z ((_1)n—k k+4 k+§t k+1 An) 2, = (G2),, 6)
n

k=n-1

for each n € N. Consequently, we deduce from relation (6) that Ay = (4,,y,) € £; whenever y € £,,(T") if and
only if Gz € £, whenever z € £,,. This implies that 1 € [{’p (T)]a if and only if G € (£,: £1). Thus, by utilizing

Lemma 3.1.7, we conclude that [£,(7)]" = o, for0 <p < 1.

Theorem 3.1.9. Define the sets o, and g5 as
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A A tews — tiys — 2tq — IN\P
0, = { = (A) € w: sup ( kK k+1>( k+4 k+2 k+1 ) < Oo}
nkeN I\t Tryn 3
t —t — 2t -1
05 = {/1 = (&) € w:( frd k+23t kel Ak) c ew}.
k

Then, [£,(7)]" = [¢,(T)]" = 0, N3 foro < p < 1.

Proof. The series Y-, A, yx converges for the sequences A = (1;) € [{’p (T)]ﬁ andy € £,(7) for0 <p < 1.

From the Abel partial sum of the series X7~ A,y With (3), we obtain that

n

n k
tiva — biyp — 241 — 1
My = Z > (e 7
kz=1 o <i=k—1 3tk l

k=1

n—1
(Ak Ak+1> (tk+4 — lpv2 = 2lg41 — 1) thia —tnez — 2tpyq — 1
= —_— = Zy +
3 3t,

Anz
b trsr e

&
[

(7)

for each n € N. Since £,(T) is linearly isomorphic to £,, we may pass to the limit as n — o on (7). The

H H . A A t -t -2t -1
convergence of Y, Ay, implies that the series Y%, (—"— k+1) ( ks ~ler2 = 2l

)zk IS convergent, too
tk  tk4a 3

thta—tny2—2tn41—1

and i A, = 0 as n — co. Moreover, since £, c c, this is possible if Inta” t"’:_Zt"“ L0, €ty
Thus, it is obtained that,
A Apsr) (tkra = Lerz — 281 — 1
Z Ay = Z (Z-222)( - )2 = (02, ®)
— \lg k+1
for all n € N, where the matrix 0 = (0,x) 5 ken IS described by o, = (’1—"— '1’”1) (t’”“_t"”_Zt"“_l). Thus,
’ tk Tkt 3

0 = (on) € (£,:¢), which implies that A = (1) € 0, N g3, that is [{’p(f]")]ﬁ C 0, N 03.

Conversely, consider that 2 = (4;) € (0, N@3) and z = (z,) € £,, . It is obtained the equations (7) and (8).

Then the series Y-y Axyx is convergent for all y € £,(7), because we have O = (onx) € (£p:cC).

Thus, 1 = (4;) € [i’p(f]")]ﬁ and consequently (g, N 03) C [{’p(fT)]ﬁ for0 <p<1.

The y-dual part can be proven similarly, so we will omit the details.

3.2. Compactness by Hausdorff measure of non-compactness on £,(7) for 1 <p <
Consider the unit sphere Vg of a normed space I1. The acronym ||. || is described as

z ViXk
k

lyllg = sup

XENT
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for any BK-space [ © Y, y = (yx) € w and the all finite sequences' space Y. We assume that the series above

exists, and in this case y € T8,

Lemma 3.2.1. (Malkowsky & Rakocevi¢, 2000) The following expressions are provided:

(). cB=cl=1e5=1¢and|ylly = |[yll, forevery y € £, and 1 € {£s, ¢, co}.
(i). €7 =, and|lylly, = Iyl forevery y € £,
(ii). 5 =2qand |lylly, = llylle, for every y € £,.

I (11: ©) means the collection of all bounded (continuous) linear transformations from II to ©.

Lemma 3.2.2. (Malkowsky & Rakocevi¢, 2000) Suppose that IT and © are BK-spaces. In that case, there is a
linear transformation V,, € M (I1: ©) such that V, (y) = Dy for all y € 11 and for any D € (I1: ).

Lemma 3.2.3. (Malkowsky & Rakocevi¢, 2000) Let TT DY is BK-space. In that case, [[Vpll = IDllm.0) =
sup||Dy ||y < oo,
neN

for D € (I1: ©).

The Hausdorff measure of non-compactness of B, which is any bounded subset of a metric space II is denoted
by x(B) with

x(B) =inf{e > 0: B cUL, O(y;,m;),y; EI,m; < €,n €N},

where 0(y;, m;) represents the open ball with center y; and radius m;, where 1 < i < n. Researchers who want

to conduct in-depth research on the subject can benefit from source (Malkowsky & Rakocevic, 2000).

Theorem 3.2.4. (Malkowsky & Rakocevi¢, 2000) Let B © £, is bounded and consider the operator p,,: €, —
£, (m € N) is defined by 1, () = V1, Y2, Y35+, Ym, 0,0,...) for y = (y,) € £, 1 < p < oo. In this case, for

the identity transformation 7 of £,,,

x(B) = lim (sur)ll(ﬂ—um)(y)lle,,)-
m—0o \ yeB

A linear transformation V: 11 — 0 is named as compact operator if the sequence (V(y)) possesses a convergent

sub-sequence in © forall y = (y) €I N 4.

The Hausdorff measure of non-compactness ||V, of V is characterized by ||V||,, = x(V(MNy)). Thus, a linear
transformation V is compact if and only if |[V||, = 0. For advanced research on the subject, sources

(Malkowsky & Rakocevi¢, 2000; Mursaleen & Noman, 2010a, 2010b) can be consulted.
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Lemma 3.2.5. (Mursaleen & Noman, 2010a) Let IT © Y be any BK-space. Then:
(i). ForD € (Il:cy), lIVpl,, = lim sup||Dy|l; and Vp, is compact iff lim||D,, ||; = 0.
n n

(if).  IfIT possesses AK property or IT = £,, and D € (II: ¢), in this case;

1. : : :
5 limsup||Dp = 7llp < [[Vp Iy = 1im sup||D, = 7lIy
n n
and L, is compact if
lim||D,, = 7lly = 0,
n

where t = (7,) and t, = limd,.
n

(iii).  LetD € (Il: €5,). Then, 0 < [[Vp ||, < lim sup||Dy, |l and Vp, is compact if lim|| Dy [|; = 0.
n n

(iv).  LetD € (II: £;). In this case,

lim| sup
l AEXK;

> o

neA I

> o

neA I

< ||Vl = 4.liim jg;}()
i

and V, is compact iff lim <sup 12 ner Dnll'r[) = 0, where X indicates all finite subsets' class of N and X;
l AEXK;

indicates subclass of K consisting of subsets of N with number of elements m asm > i.

In the rest of the paper, we will assume that matrices ® = (¢,,;) and D = (d,,;) are connected by the relation

d d t -t — 2t -1
b = ( nk n,k+1>< k+4 k+2 k+1 ) (n,k € N). ©)
9% tr+1 3

Lemma 3.2.6. Let Ocw and 1 <p < oo. If D € (£,(7):0), in this case ® € (£,:0) and Dy = ®z is
satisfied for all y € £,,(7T") with (2).

Theorem 3.2.7. Consider that 1 < p < oo. In this case:

(). LetD € (£,(T):co). Then, [Vp I, = limsup (Ty |Ppi|D
n

and V,, is compact iff im (X, |¢,|) Y = 0.
n

(i). LetD € (£,(7):c). Then,

1/q
1
Elim sup (Z | i _fqu) < ||Vpll,, < limsup <Z | i — fk|q>
n % n I

and V, is compact iff im (X, |¢nx — fil9/9 = 0, where f,, = lim¢,yy,.
n n

1/q
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(iii). Let D€ (£,(7):4x). In that case, 0 <[Vl <limsup(Xy [Ppn|DY9 and V), is compact if
n

im Xy |Pn DY = 0.

. ] . ® . (i) . .
(iv. Let D € (£,(T):%,). Then, hlmllDII({,p(T):{,l) < Wl < 4.hlm||D||({,p(T):{,1) and V, is compact iff
. 3 _ ® — a\1/q
h{n”D”(gp(:r):gl) - Oa where ”D”(gp(g*):gl) - ilelg (Zk |Zn€A ¢nk| ) .

Proof. (i) Assume that D € (£,(7): ¢o). Then,

1/q
IDally, vy = 1nlly, = 1Pnlle, = (Z |¢nk|q) .
k

Consequently, by Lemma 3.2.5/(i), we see the equation

1/q
Vol = lim Sup”Dn“'ep(T) = lim 511p< E |¢nk|q>
n n
K

and Vp is compact if lim (X, ¢, |94,
n

(i) Let D € (£,(T):c). Then, ® € (£,:c) by Lemma 3.2.6. By using Lemma 3.2.1/(iii), we see the equation
1/q
190 = £llz, = 19 = flle, = (Z | b —fk|Q) . (10)
k

By the aid of Lemma 3.2.5/(ii), we observe the inequality

1. : : :
Slimsup|[®, = fll, < [[Vplly < lim sup|Pn = flle,. (11)
n n

Then, by considering (10) and (11) together, it is obtained that

1/q
1
7 lim sup (Z | P _fqu) < IVl < limsup <Z P _fk|q>
n = " k

Thus, from Lemma 3.2.5/(ii), V,, is compact iff

1/q
lim (Z | Pk _fqu) =0.
K

(ii1) This proof parallels to those of (i) and (ii), by taking into account Lemma 3.2.5/(iii).

1/q

(iv) One obtains that
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ol 5o el -EEel)

neA 2p(T) neA *p neA k neA
Let D € (£,(7):£1), then by Lemma 3.2.6, ® € (£,:¢;) holds. By taking into account Lemma 3.2.5/(iv), one

Q>1/q

concludes that

> e

nea

q\ 1/4
) < [Wll, < 4.lim (sup
l A€E; T

q\ 1/4
lim (sup ) =0.
l A€E;

Lemma 3.2.8. (Mursaleen & Noman, 2010a) Let IT © Y be BK-space and

n
>0
r=1

> e

neAa

lim | sup
l A€EE; A

and V,, is compact iff

> e

nea

k

[n] _
113 =

I
The following assertions hold true:
(). LetD € (Il: csyp), then

1Volly = 1imnsup||D||£’1;1bS)

and V,, is compact iff

. [n] _
h,{n”D”(n:bs) = 0.

(). Let IT has AK property and D € (II: cs). In this case,
n :
1
—lim sup Z D, — k|| < |Vl <limsup
n n
r=1

2

and V,, is compact iff

n .
Z D, —k
r=1

I

I

n
lim||z D, — k|l =0,
" r=1

where k = K, with k,, = lim -, d,, and k € N.
n—-oo
(iii). Let D € (II: bs). In this case,
0 < |[Wpll, <lim supIIDIIE?[]:bS)
n
and V, is compact if limllDllﬁ’ﬁ]_bs) = 0. and V,, is compact if
T :

1/q
lim E
n

=0.
K

n q

> b

r=1

Proof. (i) We derive the following equality:
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i bric = z
r=1 24 K

Then, from Lemma 3.2.8/(i), we see that ||V, ||,, = limsup Xy 1X7=; ¢,]9)*/7 and V;, is compact iff
n

1/q
lim E
n

k

n q 1/a

> bn

r=1

n
2. b

r=1

n
2,
=1

r

() )

n q

> bn

r=1

=0.

(if) We observe that

1/q

n q

Zda—f'

r=1 tp

(12)

i‘br—f = Z zn:d’rk—f
=1 » % lr=1

Let D € (£,(7): cs). By utilizing Lemma 3.2.6, one obtains ® € (£,: ¢s). Thus, from Lemma 3.2.8/(ii), one

deduces that
n : n )
Z cDr - f Z cDr - f
r=1 r=1

tp *p

)

1
—lim sup < |[|Vpll, < limsup
2 n n

which on using (12) gives us

1 I Z
> 1mnsup

k

1/q

n q

q-')rk - f
r=1

r=1

and also, V,, is compact iff
q\ /4

i ¢rk_fk = 0.

r=1

lim Z
n

(iii) The proof mirrors the approach of the first part and by utilizing Lemma 3.2.8/(iii).

q /4 n
< IWolly <timsup| > 1> ¢ - f
n
k
k

Theorem 3.2.9.

(). LetD € (£(T):co). Then, |[Vpl, = lim supy, Yk |Pnk| and Vy, is compact if lim,, Y || = O.
(ii). LetD € (Yo (T):c). Inthis case,

1
5 lim sup (Z |k — fkl) < [Vplly < lim sup <Z P = fkl)
a k

and V,, is compact iff im (Y |¢pnx — fil) = 0.
n
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(iii). LetD € (£ (T):4). In this case,
OSH%MSHmwaI%M
n
k

and V,, is compact if lim Y, |¢,x| = 0.
n
(iv). LetD € (£ (T):%1). Then,

: ® : ®
i [IDIIG, 7.6y < 1Volly < 4-WmIDIE. ry.0,)0
: TPRR ® —
and V;, is compact iff hlm||D||(€°o(T):{,1) = 0, where

> b

nea

)

Proof. This parallels to the approach employed in Theorem 3.2.7 and therefore it is omitted for brevity.

0] 2:
D 4.y = Su
”Wmmh)A£<

k

Theorem 3.2.10.

(). LetD € (£1,(7):co). Then, ||Vp||, = lim sup,, (supk |$nk|) and Vp is compact iff lim,, (supy |pnil) =
0.
(i). LetD € (¢1(T):c). Then,

1
Zlimsup (suplue = fil ) < IVl < lim sup (suplgni — fil
n

n

and V, is compact iff lim (Supld)nk - fk|> = 0.
n k

(i) LetD € (£,(T): ). Then, 0 < [Vl < lim sup (Sup|¢nk|)
n k

and V,, is compact if lim (sup|q,’)nk|> =0.
n k
Proof. The proof parallels to the approach employed in Theorem 3.2.7 and therefore it is omitted for brevity.
4. Conclusion

Measures of non-compactness have a wide scope in functional analysis. These are also applied in metric
fixed point theory, in the operator equations' theory in Banach spaces, and in the study of varied differential and
integral equations. In particular, the characterization of compact operators on BK-spaces, which is the basis of
our work, makes use of the Hausdorff measure of non-compactness.

As outlined above, in this study, some properties of £,(7") for the cases 0 <p <land 1 <p < oo are
examined and the compactness criteria of the matrix operators on the sequence spaces £,(T)
for 1 < p < oo defined by Khan and Meitei (2024) are characterized with by using Hausdorff measure of non-

compactness.
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In our subsequent studies, we will focus on the main topic of determining the compactness criteria of matrix

operators defined in sequence spaces by the aid of Hausdorff measure of non-compactness.
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