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Abstract: The characterization of compact operators on BK-spaces, which is the 

basis of this research, makes use of the Hausdorff measure of non-compactness. In 

this study, the compactness criteria of matrix operators defined on BK-spaces 

ℓ𝑝(𝒯) and ℓ∞(𝒯) which are the domains of the regular infinite Tetranacci matrix 

obtained by using the Tetranacci number sequence in ℓ𝑝 and ℓ∞, respectively, are 

investigated by using Hausdorff measure of non-compactness and some properties 

of ℓ𝑝(𝒯) are examined. 
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1. Introduction 

The symbol 𝜔 refers to the linear space of all sequences with real elements and any linear subspace of 𝜔 is 

called as a sequence space. Well-known sequence spaces can be instantiated as the space 𝑐 of convergent 

sequences, the space 𝑐0  of null sequences, the space ℓ∞ of bounded sequences and the space ℓ𝑝  of absolutely 

𝑝-summable sequences. The aforementioned spaces are Banach spaces due to the norms ‖𝑦‖ℓ∞ = ‖𝑦‖𝑐 =

‖𝑦‖𝑐0 = sup
𝑘∈ℕ

 |𝑦𝑘| and ‖𝑦‖ℓ𝑝 = (∑  𝑘   |𝑦𝑘|
𝑝)1/𝑝, where 1 ≤ 𝑝 < ∞, the notation ∑  𝑘  means ∑  ∞

𝑘=1  and ℕ =

{1,2,3, … }. Furthermore, the acronyms 𝑐𝑠, 𝑐𝑠0 and 𝑏𝑠 refer the all convergent, null, and bounded series' spaces, 

respectively. A Banach space wherein each coordinate functional 𝑓𝑘 , defined by 𝑓𝑘(𝑦) = 𝑦𝑘 , exhibits 

continuity, is known as a BK-space.  
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For an infinite matrix 𝐷 = (𝑑𝑛𝑘)𝑛,𝑘∈ℕ with real terms, 𝐷𝑛 represents the 𝑛th row of 𝐷. The 𝐷-transform of 

𝑦 = (𝑦𝑘) ∈ 𝜔, denoted with 𝐷𝑦 = (𝐷𝑦)𝑛∈ℕ, is described as ∑  ∞
𝑘=1 𝑑𝑛𝑘𝑦𝑘  if the series converges. A matrix that 

transforms a convergent sequence into a convergent sequence while preserving limit is called as regular. 

Let Π,Θ ⊂ 𝜔. If 𝐷𝑦 ∈ Θ for all 𝑦 ∈ Π, a matrix 𝐷 is named as matrix transformation between the spaces Π 

and Θ and the family of matrix transformations between Π and Θ is indicated by (Π:Θ). Furthermore, the 

domain Θ𝐷 of 𝐷 on the space Θ is describes as 

Θ𝐷 = {𝑦 ∈ 𝜔: 𝐷𝑦 ∈ Θ} (1) 

and this is a sequence space, too. We can see in Wilansky (1984) that if Θ is BK-space and 𝐷 is triangle, in that 

case Θ𝐷 is also BK-space with the norm described as ‖𝑦‖Θ𝐷 = ‖𝐷𝑦‖Θ. BK-spaces (or Banach spaces) 

formulated through the application of the Euler, Cesàro, Riesz, Difference, Λ matrices (Altay & Başar, 2002, 

2006a, 2006b; Başar & Altay, 2022;   Mursaleen & Noman, 2010a; Ng & Lee, 1978; Sengönül & Başar, 2005), 

among others, represent some of the seminal works in this area. More detailed information on this topic can be 

found in sources (Başar, 2002; Mursaleen & Başar, 2020). 

The notion of defining sequence spaces with triangular matrices obtained by using special integer 

sequences is based on the study of Kara and Başarır (2012)  and the authors described Fibonacci sequence 

spaces with the help of Fibonacci number sequence. Then, as an application of summability theory 

to sequence spaces, some algebraic, topological and geometric properties of new sequence spaces obtained in 

studies carried out with similar logic using Tribonacci, Mersenne, Motzkin, Padovan, Catalan, Schröder, Bell, 

Leonardo, Lucas and some other sequences (Candan, 2012, 2013, 2015; Dağlı, 2023; Dağlı & Yaying, 2023; 

Demiriz & Erdem, 2024; Ellidokuzoğlu & Demiriz, 2018; Erdem et al., 2024; Erdem, 2024a, 2024b;  

İlkhan & Kara, 2021; Kara, 2013; Karakaş, 2023; Karakaş & Karabudak, 2017; Yaying & Hazarika, 2020, 

2022; Yaying et al., 2022; Yaying & Kara, 2021) were investigated. 

2. Tetranacci numbers, matrix and sequence spaces 

The Tetranacci sequence, initially introduced by Feinberg (1963), is elaborated within this discourse. This 

sequence, as implied by its nomenclature, is generated through the summation of the preceding four terms. 

Represented as (𝑡𝑛)𝑛∈ℕ for the 𝑛th Tetranacci term, the sequence adheres to the recurrence formula 

𝑡𝑛 = 𝑡𝑛−1 + 𝑡𝑛−2 + 𝑡𝑛−3 + 𝑡𝑛−4, 

for 𝑛 > 4, with the sequence initiating from 𝑡1 = 1, 𝑡2 = 1, 𝑡3 = 2, and 𝑡4 = 4. Consequently, the first few 

initial terms of the Tetranacci sequence are given as: 

1, 1, 2, 4, 8, 15, 29, 56, 108,208, 401, 773,⋯. 
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Significant to note from Feinberg's findings are (see (Feinberg, 1963)): 

(a) The limit lim
𝑛→∞

 
𝑡𝑛

𝑡𝑛+1
 converges to 0.51879006…. 

(b) Conversely, lim
𝑛→∞

 
𝑡𝑛+1

𝑡𝑛
 approaches 1.9275619…. 

Furthermore, the sequence satisfies the identity 

∑ 

𝑛

𝑘=1

𝑡𝑘 =
1

3
(𝑡𝑛+4 − 𝑡𝑛+2 − 2𝑡𝑛+1 − 1) 

as precisely elucidated in Waddill (1992) and Proposition 2.2 of Soykan's work (Soykan, 2019). 

For the purpose of this study, it is stipulated that terms bearing non-positive indices are to be considered as 

null. 

Quite recently, Khan and Meitei (2024) defined the Tetranacci matrix 𝒯 and the sequence spaces Π(𝒯) as 

the domain of 𝒯 for Π ∈ {ℓ𝑝, ℓ∞, 𝑐, 𝑐0} and 1 ≤ 𝑝 < ∞. Later, authors proved existence theorem with example 

for infinite systems of differential equations in ℓ𝑝(𝒯) after studying these spaces in terms of some properties 

such as completeness, isomorphism, inclusion relations, Schauder basis, 𝛼-, 𝛽- and 𝛾-duals and matrix 

transformations. 

The Tetranacci matrix 𝒯 = (𝔱𝑛𝑘)𝑛,𝑘∈ℕ is defined as 

𝔱𝑛𝑘 =

{
 

 
3𝑡𝑘

𝑡𝑛+4 − 𝑡𝑛+2 − 2𝑡𝑛+1 − 1
,  if 1 ≤ 𝑘 ≤ 𝑛,

0 ,  otherwise.

 

Equivalently, this can be expressed as 

𝒯 =

[
 
 
 
 
 
 
 
 
 
1 0 0 0 0 ⋯
1

2

1

2
0 0 0 ⋯

1

4

1

4

1

2
0 0 ⋯

1

8

1

8

1

4

1

2
0 ⋯

1

16

1

16

1

8

1

4

1

2
⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱]
 
 
 
 
 
 
 
 
 

. 

The 𝒯-transform of any 𝑦 = (𝑦𝑘) ∈ 𝜔 is given by 𝑧 = (𝑧𝑛) described by 

𝑧𝑛 = (𝒯𝑦)𝑛 =
3

𝑡𝑛+4 − 𝑡𝑛+2 − 2𝑡𝑛+1 − 1
∑  

𝑛

𝑘=1

  𝑡𝑘𝑦𝑘  (𝑛 ∈ ℕ). (2) 
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Lemma 2.1.    𝐷 = (𝑑𝑛𝑘) is regular iff each of the given conditions 

(i). sup
𝑛∈ℕ

 ∑  𝑘 |𝑑𝑛𝑘| < ∞, 

(ii). lim
𝑛→∞

 ∑  𝑘 𝑑𝑛𝑘 = 1, 

(iii). lim
𝑛→∞

 𝑑𝑛𝑘 = 0, 

holds true. 

The Tetranacci matrix is regular because it satisfies the conditions of the lemma just mentioned. That is, the 

Tetranacci transform of a convergent sequence converges with the same limit. 

The primary objective of this article is to describe to sequence space ℓ𝑝(𝒯) for 0 < 𝑝 < 1, explain some 

properties of the space ℓ𝑝(𝒯) and to give the characterization of a certain class of compact operators acting on 

ℓ𝑝(𝒯) for 1 ≤ 𝑝 ≤ ∞ by the utilization of Hausdorff measure of non-compactness. 

3. Some properties and compactness by Hausdorff measure of non-compactness on 𝓵𝒑(𝓣) 

3.1 The sequence space ℓ𝑝(𝒯)  and some properties 

In this section, we describe the sequence space ℓ𝑝(𝒯) for 0 < 𝑝 < 1, examine some properties for the cases 

0 < 𝑝 < 1 and 1 ≤ 𝑝 < ∞, determine the 𝛼 −, 𝛽 − and 𝛾 −duals of the space ℓ𝑝(𝒯) for 0 < 𝑝 ≤ 1. 

We now define the space ℓ𝑝(𝒯) (0 < 𝑝 < 1) by the following way: 

ℓ𝑝(𝒯)  =  {𝑦 = (𝑦𝑘) ∈ 𝜔:∑  

∞

𝑛=1

  |
3

𝑡𝑛+4 − 𝑡𝑛+2 − 2𝑡𝑛+1 − 1
∑  

𝑛

𝑘=1

  𝑡𝑘𝑦𝑘|

𝑝

< ∞}. 

Theorem 3.1.1.  The space ℓ𝑝(𝒯) is complete 𝑝-normed sequence space with the 𝑝 −norm 

‖𝑦‖ℓ𝑝(𝒯)
′ = ∑  

∞

𝑛=1

|
3

𝑡𝑛+4 − 𝑡𝑛+2 − 2𝑡𝑛+1 − 1
∑  

𝑛

𝑘=1

  𝑡𝑘𝑦𝑘|

𝑝

 

for 0 < 𝑝 < 1. 

Proof. The result follows immediately due to Wilansky (1984) and the fact that ℓ𝑝 is complete 𝑝-normed space 

for 0 < 𝑝 < 1  and 𝒯 is a triangle. 

Theorem 3.1.2.  The space ℓ𝑝(𝒯) is linearly 𝑝-norm isomorphic to the space ℓ𝑝 for 0 < 𝑝 < 1. 

Proof. Define the function ℛ: ℓ𝑝(𝒯) → ℓ𝑝 such that ℛ(𝑦) = 𝒯𝑦 for 0 < 𝑝 < 1. The linearity of ℛ is 

straightforward. 

The injectivity of ℛ follows from the fact that ℛ(𝑦) = 0 implies 𝑦 = 0. 
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Let us consider 𝑧 = (𝑧𝑘) ∈ ℓ𝑝 and 𝑦 = (𝑦𝑘) ∈ 𝜔 such that 

𝑦𝑘 = ∑  

𝑘

𝑖=𝑘−1

  (−1)𝑘−𝑖
𝑡𝑖+4 − 𝑡𝑖+2 − 2𝑡𝑖+1 − 1

3𝑡𝑘
𝑧𝑖, (3) 

with the initial condition 𝑦1 = 𝑧1, for every 𝑘 ≥ 2. From the relationship 

(𝒯𝑦)𝑛  =
3

𝑡𝑛+4 − 𝑡𝑛+2 − 2𝑡𝑛+1 − 1
∑  

𝑛

𝑘=1

  𝑡𝑘𝑦𝑘

 =
3

𝑡𝑛+4 − 𝑡𝑛+2 − 2𝑡𝑛+1 − 1
∑  

𝑛

𝑘=1

  𝑡𝑘 ∑  

𝑘

𝑖=𝑘−1

  (−1)𝑘−𝑖
𝑡𝑖+4 − 𝑡𝑖+2 − 2𝑡𝑖+1 − 1

3𝑡𝑘
𝑧𝑖

 = 𝑧𝑛 ,

 

we see that ℛ is surjective. Moreover, the equality ‖𝑦‖ℓ𝑝(𝒯)
′ = ‖𝒯𝑦‖ℓ𝑝

′  shows that ℛ is norm preserving. This 

completes the proof. 

Theorem 3.1.3.  ℓ𝑝(𝒯)  isn't Hilbert space for 1 ≤ 𝑝 < ∞ and 𝑝 ≠ 2. 

Proof. Considering 𝑦̃ = (1,1,−1,0,0,… ) and 𝑧̃ = (1,−3,1,0,0,… ), it follows that 𝒯𝑦̃ = (1,1,0,0,… ) and 𝒯𝑧̃ =

(1,−1,0,0, … ). Consequently, one derives that 

‖𝑦̃ + 𝑧̃‖ℓ𝑝(𝒯)
2 + ‖𝑦̃ − 𝑧̃‖ℓ𝑝(𝒯)

2 = 8 ≠ 2
2+

2

𝑝 = 2(‖𝑦̃‖ℓ𝑝(𝒯)
2 + ‖𝑧̃‖ℓ𝑝(𝒯)

2 ). 

From this observation, it is evident that the parallelogram law doesn't hold for ‖ ⋅ ‖ℓ𝑝(𝒯) when 𝑝 ≠ 2, indicating 

that ℓ𝑝(𝒯) isn't Hilbert space for 1 ≤ 𝑝 < ∞ and 𝑝 ≠ 2. 

Theorem 3.1.4.  The inclusion ℓ𝑝(𝒯) ⊂ ℓ𝑠(𝒯) is strict for 1 ≤ 𝑝 < 𝑠 < ∞. 

Proof. Considering 𝑦 = (𝑦𝑘) ∈ ℓ𝑝(𝒯) such that 𝒯𝑦 ∈ ℓ𝑝, and acknowledging that ℓ𝑝 ⊂ ℓ𝑠 for 1 ≤ 𝑝 < 𝑠 < ∞, 

it follows that 𝒯𝑦 ∈ ℓ𝑠. Therefore, one can assert that 𝑦 = (𝑦𝑘) ∈ ℓ𝑠(𝒯). 

The strictness of this inclusion is readily observable from the relation 𝑧̃ = 𝒯𝑦̃ ∈ ℓ𝑠 ∖ ℓ𝑝. 

Given spaces Π,Θ ⊂ 𝜔, the multiplier set 𝑀(Π:Θ) is defined as follows: 

𝑀(Π:Θ) = {𝜆 = (𝜆𝑛) ∈ 𝜔: 𝜆𝑦 = (𝜆𝑛𝑦𝑛) ∈ Θ for all (𝑦𝑛) ∈ Π}. 

Then, the 𝛼-, 𝛽-, and 𝛾-duals of the space Π are given by: 

Π𝛼 = 𝑀(Π: ℓ1), Π
𝛽 = 𝑀(Π: 𝑐𝑠) and Π𝛾 = 𝑀(Π: 𝑏𝑠). 
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We now present the following lemmas due to (Gross-Erdmann, 1993; Lascarides & Maddox, 1970), which aid 

in characterizing certain matrix classes for determining the duals: 

Lemma 3.1.5.  For 0 < 𝑝 ≤ 1, 𝐷 = (𝑑𝑛𝑘) ∈ (ℓ𝑝: ℓ∞) iff 

sup
𝑛,𝑘∈ℕ

 |𝑑𝑛𝑘|
𝑝 < ∞. (4) 

Lemma 3.1.6.   For 0 < 𝑝 ≤ 1, 𝐷 = (𝑑𝑛𝑘) ∈ (ℓ𝑝: 𝑐) iff the conditions (4) and 

∃𝑑𝑘 ∈ ℂ ∋ lim
𝑛→∞

 𝑑𝑛𝑘 = 𝑑𝑘 , for all ∈ ℕ 

hold. 

Lemma 3.1.7.  For 0 < 𝑝 ≤ 1, 𝐷 = (𝑑𝑛𝑘) ∈ (ℓ𝑝: ℓ1) iff 

sup
𝑀∈𝒦

 sup
𝑘∈ℕ

  |∑  

∞

𝑛∈𝒦

 𝑑𝑛𝑘|

𝑝

< ∞. (5) 

Theorem 3.1.8.  Define the set 𝜚1 by 

𝜚1  = {𝜆 = (𝜆𝑘) ∈ 𝜔: sup
𝑀∈𝒦

 sup
𝑘∈ℕ

  |∑  

∞

𝑛∈𝒦

 𝑔𝑛𝑘|

𝑝

< ∞} , 

where 𝐺 = (𝑔𝑛𝑘) is a triangle defined by 

𝑔𝑛𝑘 =

{
 

 (−1)𝑛−𝑘
𝑡𝑘+4 − 𝑡𝑘+2 − 2𝑡𝑘+1 − 1

3𝑡𝑛
𝜆𝑛 ,  if 𝑛 − 1 ≤ 𝑘 ≤ 𝑛,

0 ,  otherwise.

 

Then, [ℓ𝑝(𝒯)]
𝛼
= 𝜚1 for 0 < 𝑝 ≤ 1. 

Proof. By considering the relation (2), we derive the following equality: 

𝜆𝑛𝑦𝑛  = 𝜆𝑛 ( ∑  

𝑛

𝑘=𝑛−1

  (−1)𝑛−𝑘
𝑡𝑘+4 − 𝑡𝑘+2 − 2𝑡𝑘+1 − 1

3𝑡𝑛
𝑧𝑘)

 =  ∑  

𝑛

𝑘=𝑛−1

  ((−1)𝑛−𝑘
𝑡𝑘+4 − 𝑡𝑘+2 − 2𝑡𝑘+1 − 1

3𝑡𝑛
𝜆𝑛)𝑧𝑘 = (𝐺𝑧)𝑛 ,                                                               (6)

 

for each 𝑛 ∈ ℕ. Consequently, we deduce from relation (6) that 𝜆𝑦 = (𝜆𝑛𝑦𝑛) ∈ ℓ1 whenever 𝑦 ∈ ℓ𝑝(𝒯) if and 

only if 𝐺𝑧 ∈ ℓ1 whenever 𝑧 ∈ ℓ𝑝. This implies that 𝜆 ∈ [ℓ𝑝(𝒯)]
𝛼

 if and only if 𝐺 ∈ (ℓ𝑝: ℓ1). Thus, by utilizing 

Lemma 3.1.7, we conclude that [ℓ𝑝(𝒯)]
𝛼
= 𝜚1 for 0 < 𝑝 ≤ 1. 

Theorem 3.1.9.   Define the sets 𝜚2 and 𝜚3 as 
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𝜚2  = {𝜆 = (𝜆𝑘) ∈ 𝜔: sup
𝑛,𝑘∈ℕ

  |(
𝜆𝑘
𝑡𝑘
−
𝜆𝑘+1
𝑡𝑘+1

) (
𝑡𝑘+4 − 𝑡𝑘+2 − 2𝑡𝑘+1 − 1

3
)|
𝑝

< ∞}

𝜚3  = {𝜆 = (𝜆𝑘) ∈ 𝜔: (
𝑡𝑘+4 − 𝑡𝑘+2 − 2𝑡𝑘+1 − 1

3𝑡𝑘
𝜆𝑘) ∈ ℓ∞} .

 

Then, [ℓ𝑝(𝒯)]
𝛽
= [ℓ𝑝(𝒯)]

𝛾
= 𝜚2 ∩ 𝜚3 for 0 < 𝑝 ≤ 1. 

Proof. The series ∑  ∞
𝑘=1 𝜆𝑘𝑦𝑘  converges for the sequences 𝜆 = (𝜆𝑘) ∈ [ℓ𝑝(𝒯)]

𝛽
 and 𝑦 ∈ ℓ𝑝(𝒯) for 0 < 𝑝 ≤ 1. 

From the Abel partial sum of the series ∑  ∞
𝑘=1 𝜆𝑘𝑦𝑘  with (3), we obtain that 

∑ 

𝑛

𝑘=1

 𝜆𝑘𝑦𝑘  =  ∑  

𝑛

𝑘=1

 𝜆𝑘 ( ∑  

𝑘

𝑖=𝑘−1

  (−1)𝑘−𝑖
𝑡𝑖+4 − 𝑡𝑖+2 − 2𝑡𝑖+1 − 1

3𝑡𝑘
𝑧𝑖)

 =  ∑  

𝑛−1

𝑘=1

  (
𝜆𝑘
𝑡𝑘
−
𝜆𝑘+1
𝑡𝑘+1

) (
𝑡𝑘+4 − 𝑡𝑘+2 − 2𝑡𝑘+1 − 1

3
) 𝑧𝑘 +

𝑡𝑛+4 − 𝑡𝑛+2 − 2𝑡𝑛+1 − 1

3𝑡𝑛
𝜆𝑛𝑧𝑛

             (7)

 

for each 𝑛 ∈ ℕ. Since ℓ𝑝(𝒯) is linearly isomorphic to ℓ𝑝, we may pass to the limit as 𝑛 → ∞ on (7). The 

convergence of ∑  ∞
𝑘=1 𝜆𝑘𝑦𝑘  implies that the series ∑  ∞

𝑘=1 (
𝜆𝑘

𝑡𝑘
−

𝜆𝑘+1

𝑡𝑘+1
) (

𝑡𝑘+4−𝑡𝑘+2−2𝑡𝑘+1−1

3
) 𝑧𝑘 is convergent, too 

and 
𝑡𝑛+4−𝑡𝑛+2−2𝑡𝑛+1−1

3𝑡𝑛
𝜆𝑛 → 0 as 𝑛 → ∞. Moreover, since ℓ𝑝 ⊂ 𝑐, this is possible if 

𝑡𝑛+4−𝑡𝑛+2−2𝑡𝑛+1−1

3𝑡𝑛
𝜆𝑛 ∈ ℓ∞. 

Thus, it is obtained that, 

∑ 

∞

𝑘=1

 𝜆𝑘𝑦𝑘 =∑  

∞

𝑘=1

  (
𝜆𝑘
𝑡𝑘
−
𝜆𝑘+1
𝑡𝑘+1

) (
𝑡𝑘+4 − 𝑡𝑘+2 − 2𝑡𝑘+1 − 1

3
) 𝑧𝑘 = (𝑂𝑧)𝑛 (8) 

for all 𝑛 ∈ ℕ, where the matrix 𝑂 = (𝑜𝑛𝑘)𝑛,𝑘∈ℕ is described by 𝑜𝑛𝑘 = (
𝜆𝑘

𝑡𝑘
−

𝜆𝑘+1

𝑡𝑘+1
) (

𝑡𝑘+4−𝑡𝑘+2−2𝑡𝑘+1−1

3
). Thus, 

𝑂 = (𝑜𝑛𝑘) ∈ (ℓ𝑝: 𝑐), which implies that 𝜆 = (𝜆𝑘) ∈ 𝜚2 ∩ 𝜚3, that is [ℓ𝑝(𝒯)]
𝛽
⊂ 𝜚2 ∩ 𝜚3. 

Conversely, consider that 𝜆 = (𝜆𝑘) ∈ (𝜚2 ∩ 𝜚3) and 𝑧 = (𝑧𝑘) ∈ ℓ𝑝 . It is obtained the equations (7) and (8). 

Then the series ∑  ∞
𝑘=1 𝜆𝑘𝑦𝑘  is convergent for all 𝑦 ∈ ℓ𝑝(𝒯), because we have 𝑂 = (𝑜𝑛𝑘) ∈ (ℓ𝑝: 𝑐). 

Thus, 𝜆 = (𝜆𝑘) ∈ [ℓ𝑝(𝒯)]
𝛽

 and consequently (𝜚2 ∩ 𝜚3) ⊂ [ℓ𝑝(𝒯)]
𝛽

 for 0 < 𝑝 ≤ 1. 

The 𝛾-dual part can be proven similarly, so we will omit the details. 

3.2. Compactness by Hausdorff measure of non-compactness on ℓ𝑝(𝒯) for 1 ≤ 𝑝 ≤ ∞ 

Consider the unit sphere 𝒩Π of a normed space Π. The acronym ‖. ‖Π
∙  is described as 

‖𝑦‖Π
∙ = sup

𝑥∈𝒩Π

  |∑  

𝑘

 𝑦𝑘𝑥𝑘| 
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for any BK-space Π ⊃ Υ, 𝑦 = (𝑦𝑘) ∈ 𝜔 and the all finite sequences' space Υ. We assume that the series above 

exists, and in this case 𝑦 ∈ Π𝛽. 

Lemma 3.2.1.  (Malkowsky & Rakočević, 2000) The following expressions are provided: 

(i). 𝑐𝛽 = 𝑐0
𝛽
= ℓ∞

𝛽
= ℓ1 and ‖𝑦‖Π

∙ = ‖𝑦‖ℓ1 for every 𝑦 ∈ ℓ1 and Π ∈ {ℓ∞, 𝑐, 𝑐0}. 

(ii). ℓ1
𝛽
= ℓ∞ and ‖𝑦‖ℓ1

∙ = ‖𝑦‖ℓ∞  for every 𝑦 ∈ ℓ∞. 

(iii). ℓ𝑝
𝛽
= ℓ𝑞 and ‖𝑦‖ℓ𝑝

∙ = ‖𝑦‖ℓ𝑞 for every 𝑦 ∈ ℓ𝑞. 

𝔐(Π:Θ) means the collection of all bounded (continuous) linear transformations from Π to Θ. 

Lemma 3.2.2. (Malkowsky & Rakočević, 2000) Suppose that Π and Θ are BK-spaces. In that case, there is a 

linear transformation 𝒱𝐷 ∈ 𝔐(Π:Θ) such that 𝒱𝐷(𝑦) = 𝐷𝑦 for all 𝑦 ∈ Π and for any 𝐷 ∈ (Π:Θ). 

Lemma 3.2.3. (Malkowsky & Rakočević, 2000) Let Π ⊃ Υ is BK-space. In that case, ‖𝒱𝐷‖ = ‖𝐷‖(Π:Θ) =

sup
𝑛∈ℕ

 ‖𝐷𝑛‖Π
∙ < ∞, 

for 𝐷 ∈ (Π:Θ). 

The Hausdorff measure of non-compactness of 𝐵, which is any bounded subset of a metric space Π is denoted 

by 𝜒(𝐵) with 

𝜒(𝐵) = inf{𝜖 > 0:𝐵 ⊂∪𝑖=1
𝑛 𝑂(𝑦𝑖 ,𝑚𝑖), 𝑦𝑖 ∈ Π,𝑚𝑖 < 𝜖, 𝑛 ∈ ℕ}, 

where 𝑂(𝑦𝑖 , 𝑚𝑖) represents the open ball with center 𝑦𝑖 and radius 𝑚𝑖, where 1 ≤ 𝑖 ≤ 𝑛. Researchers who want 

to conduct in-depth research on the subject can benefit from source (Malkowsky & Rakočević, 2000). 

Theorem 3.2.4. (Malkowsky & Rakočević, 2000) Let 𝐵 ⊂ ℓ𝑝 is bounded and consider the operator 𝜇𝑚 : ℓ𝑝 ⟶

ℓ𝑝 (𝑚 ∈ ℕ) is defined by 𝜇𝑚(𝑦) = (𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑚 , 0,0, . . . ) for 𝑦 = (𝑦𝑚) ∈ ℓ𝑝, 1 ≤ 𝑝 < ∞. In this case, for 

the identity transformation ℐ of ℓ𝑝, 

𝜒(𝐵) = lim
𝑚→∞

 (sup
𝑦∈𝐵

 ‖(ℐ − 𝜇𝑚)(𝑦)‖ℓ𝑝). 

A linear transformation 𝒱: Π → Θ is named as compact operator if the sequence (𝒱(𝑦)) possesses a convergent 

sub-sequence in Θ for all 𝑦 = (𝑦𝑘) ∈ Π ∩ ℓ∞. 

The Hausdorff measure of non-compactness ‖𝒱‖𝜒 of 𝒱 is characterized by ‖𝒱‖𝜒 = 𝜒(𝒱(𝒩Π)). Thus, a linear 

transformation 𝒱 is compact if and only if ‖𝒱‖𝜒 = 0. For advanced research on the subject, sources 

(Malkowsky & Rakočević, 2000; Mursaleen & Noman, 2010a, 2010b) can be consulted. 
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Lemma 3.2.5. (Mursaleen & Noman, 2010a) Let Π ⊃ Υ be any BK-space. Then: 

(i). For 𝐷 ∈ (Π: 𝑐0), ‖𝒱𝐷‖𝜒 = lim sup
𝑛

 ‖𝐷𝑛‖Π
∙  and 𝒱𝐷  is compact iff lim

𝑛
 ‖𝐷𝑛‖Π

∙ = 0. 

(ii). If Π possesses AK property or Π = ℓ∞  and 𝐷 ∈ (Π: 𝑐), in this case; 

1

2
lim sup

𝑛
 ‖𝐷𝑛 − 𝜏‖Π

∙ ≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 ‖𝐷𝑛 − 𝜏‖Π
∙  

and ℒ𝐷 is compact if 

lim
𝑛
 ‖𝐷𝑛 − 𝜏‖Π

∙ = 0, 

where 𝜏 = (𝜏𝑘)  and 𝜏𝑘 = lim
𝑛
 𝑑𝑛𝑘. 

(iii). Let 𝐷 ∈ (Π: ℓ∞). Then, 0 ≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 ‖𝐷𝑛‖Π
∙  and 𝒱𝐷  is compact if lim

𝑛
 ‖𝐷𝑛‖Π

∙ = 0. 

(iv). Let 𝐷 ∈ (Π: ℓ1). In this case, 

lim
𝑖
 ( sup
𝐴∈𝒦𝑖

 ‖∑  

𝑛∈𝐴

 𝐷𝑛‖

Π

∙

) ≤ ‖𝒱𝐷‖𝜒 ≤ 4. lim
𝑖
 (sup
𝐴∈𝒦𝑖

 ‖∑  

𝑛∈𝐴

 𝐷𝑛‖

Π

∙

) 

and 𝒱𝐷  is compact iff lim
𝑖
 ( sup
𝐴∈𝒦𝑖

 ‖∑  𝑛∈𝐸  𝐷𝑛‖Π
∙ ) = 0, where 𝒦 indicates all finite subsets' class of ℕ and 𝒦𝑖 

indicates subclass of 𝒦 consisting of subsets of ℕ with number of elements 𝑚 as 𝑚 > 𝑖. 

In the rest of the paper, we will assume that matrices Φ = (𝜙𝑛𝑘) and 𝐷 = (𝑑𝑛𝑘) are connected by the relation 

𝜙𝑛𝑘 = (
𝑑𝑛𝑘
𝑡𝑘

−
𝑑𝑛,𝑘+1
𝑡𝑘+1

)(
𝑡𝑘+4 − 𝑡𝑘+2 − 2𝑡𝑘+1 − 1

3
) (𝑛, 𝑘 ∈ ℕ). (9) 

Lemma 3.2.6.  Let Θ ⊂ 𝜔 and 1 ≤ 𝑝 ≤ ∞. If 𝐷 ∈ (ℓ𝑝(𝒯): Θ), in this case Φ ∈ (ℓ𝑝: Θ) and 𝐷𝑦 = Φ𝑧 is 

satisfied for all 𝑦 ∈ ℓ𝑝(𝒯) with (2). 

Theorem 3.2.7.  Consider that 1 < 𝑝 < ∞. In this case: 

(i). Let 𝐷 ∈ (ℓ𝑝(𝒯): 𝑐0). Then, ‖𝒱𝐷‖𝜒 = lim sup
𝑛

 (∑  𝑘   |𝜙𝑛𝑘|
𝑞)1/𝑞  

and 𝒱𝐷  is compact iff lim
𝑛
 (∑  𝑘   |𝜙𝑛𝑘|

𝑞)1/𝑞 = 0. 

(ii). Let 𝐷 ∈ (ℓ𝑝(𝒯): 𝑐). Then, 

1

2
lim sup

𝑛
 (∑  

𝑘

  |𝜙𝑛𝑘 − 𝑓𝑘 |
𝑞)

1/𝑞

≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 (∑  

𝑘

  |𝜙𝑛𝑘 − 𝑓𝑘|
𝑞)

1/𝑞

 

and 𝒱𝐷  is compact iff lim
𝑛
 (∑  𝑘   |𝜙𝑛𝑘 − 𝑓𝑘 |

𝑞)1/𝑞 = 0, where 𝑓𝑘 = lim
𝑛
 𝜙𝑛𝑘. 
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(iii). Let 𝐷 ∈ (ℓ𝑝(𝒯): ℓ∞). In that case, 0 ≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 (∑  𝑘   |𝜙𝑛𝑘|
𝑞)1/𝑞 and 𝒱𝐷  is compact if 

lim
𝑛
 (∑  𝑘   |𝜙𝑛𝑘|

𝑞)1/𝑞 = 0. 

(iv). Let 𝐷 ∈ (ℓ𝑝(𝒯): ℓ1). Then, lim
𝑖
 ‖𝐷‖(ℓ𝑝(𝒯):ℓ1)

(𝑖)
≤ ‖𝒱𝐷‖𝜒 ≤ 4. lim

𝑖
 ‖𝐷‖(ℓ𝑝(𝒯):ℓ1)

(𝑖)
 and 𝒱𝐷  is compact iff 

lim
𝑖
 ‖𝐷‖(ℓ𝑝(𝒯):ℓ1)

(𝑖)
= 0, where ‖𝐷‖(ℓ𝑝(𝒯):ℓ1)

(𝑖)
= sup

𝐴∈ℰ𝑖

 (∑  𝑘   |∑  𝑛∈𝐴  𝜙𝑛𝑘|
𝑞)1/𝑞. 

Proof. (i) Assume that 𝐷 ∈ (ℓ𝑝(𝒯): 𝑐0). Then, 

‖𝐷𝑛‖ℓ𝑝(𝒯)
∙ = ‖Φ𝑛‖ℓ𝑝

∙ = ‖Φ𝑛‖ℓ𝑞 = (∑  

𝑘

  |𝜙𝑛𝑘|
𝑞)

1/𝑞

. 

Consequently, by Lemma 3.2.5/(i), we see the equation 

‖𝒱𝐷‖𝜒 = lim sup
𝑛

 ‖𝐷𝑛‖ℓ𝑝(𝒯)
∙ = lim sup

𝑛
 (∑  

𝑘

  |𝜙𝑛𝑘|
𝑞)

1/𝑞

 

and 𝒱𝐷  is compact if lim
𝑛
 (∑  𝑘   |𝜙𝑛𝑘|

𝑞)1/𝑞. 

(ii) Let 𝐷 ∈ (ℓ𝑝(𝒯): 𝑐). Then, Φ ∈ (ℓ𝑝: 𝑐) by Lemma 3.2.6. By using Lemma 3.2.1/(iii), we see the equation 

‖Φ𝑛 − 𝑓‖ℓ𝑝
∙ = ‖Φ𝑛 − 𝑓‖ℓ𝑞 = (∑ 

𝑘

  |𝜙𝑛𝑘 − 𝑓𝑘|
𝑞)

1/𝑞

. (10) 

By the aid of Lemma 3.2.5/(ii), we observe the inequality 

1

2
lim sup

𝑛
 ‖Φ𝑛 − 𝑓‖ℓ𝑝

∙ ≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 ‖Φ𝑛 − 𝑓‖ℓ𝑝
∙ . (11) 

Then, by considering (10) and (11) together, it is obtained that 

1

2
lim sup

𝑛
 (∑  

𝑘

  |𝜙𝑛𝑘 − 𝑓𝑘|
𝑞)

1/𝑞

≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 (∑  

𝑘

  |𝜙𝑛𝑘 − 𝑓𝑘|
𝑞)

1/𝑞

. 

Thus, from Lemma 3.2.5/(ii), 𝒱𝐷  is compact iff 

lim
𝑛
 (∑  

𝑘

  |𝜙𝑛𝑘 − 𝑓𝑘|
𝑞)

1/𝑞

= 0. 

(iii) This proof parallels to those of (i) and (ii), by taking into account Lemma 3.2.5/(iii). 

(iv) One obtains that 
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‖∑  

𝑛∈𝐴

 𝐷𝑛‖

ℓ𝑝(𝒯)

∙

= ‖∑  

𝑛∈𝐴

 Φ𝑛‖

ℓ𝑝

∙

= ‖∑  

𝑛∈𝐴

 Φ𝑛‖

ℓ𝑞

= (∑ 

𝑘

  |∑  

𝑛∈𝐴

 𝜙𝑛𝑘|

𝑞

)

1/𝑞

. 

Let 𝐷 ∈ (ℓ𝑝(𝒯): ℓ1), then by Lemma 3.2.6, Φ ∈ (ℓ𝑝: ℓ1) holds. By taking into account Lemma 3.2.5/(iv), one 

concludes that 

lim
𝑖
 (sup
𝐴∈ℰ𝑖

 ∑  

𝑘

  |∑  

𝑛∈𝐴

 𝜙𝑛𝑘|

𝑞

)

1/𝑞

≤ ‖𝒱𝐷‖𝜒 ≤ 4. lim
𝑖
 (sup
𝐴∈ℰ𝑖

 ∑  

𝑘

  |∑  

𝑛∈𝐴

 𝜙𝑛𝑘|

𝑞

)

1/𝑞

 

and 𝒱𝐷  is compact iff 

lim
𝑖
 (sup
𝐴∈ℰ𝑖

 ∑  

𝑘

  |∑  

𝑛∈𝐴

 𝜙𝑛𝑘|

𝑞

)

1/𝑞

= 0. 

Lemma 3.2.8.   (Mursaleen & Noman, 2010a) Let Π ⊃ Υ be BK-space and 

‖𝐷‖(Π:𝑏𝑠)
[𝑛]

= ‖∑ 

𝑛

𝑟=1

 𝐷𝑟‖

Π

∙

. 

The following assertions hold true: 

(i). Let 𝐷 ∈ (Π: 𝑐𝑠0), then 

 ‖𝒱𝐷‖𝜒 = lim sup
𝑛

‖𝐷‖(Π:𝑏𝑠)
[𝑛]

 

and 𝒱𝐷  is compact iff 

lim
𝑛
 ‖𝐷‖(Π:𝑏𝑠)

[𝑛]
= 0. 

(ii).  Let Π has 𝐴𝐾 property and 𝐷 ∈ (Π: 𝑐𝑠). In this case,  

1

2
lim sup

𝑛
 ‖∑  

𝑛

𝑟=1

 𝐷𝑟 − 𝜅‖

Π

∙

≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 ‖∑  

𝑛

𝑟=1

 𝐷𝑟 − 𝜅‖

Π

∙

 

and 𝒱𝐷  is compact iff 

lim
𝑛
 ‖∑  

𝑛

𝑟=1

𝐷𝑟 − 𝜅‖Γ
∙ = 0, 

 where 𝜅 = 𝜅𝑘 with 𝜅𝑘 = lim
𝑛→∞

 ∑  𝑛
𝑟=1 𝑑𝑟𝑘 and 𝑘 ∈ ℕ. 

(iii).  Let 𝐷 ∈ (Π: 𝑏𝑠). In this case, 

0 ≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 ‖𝐷‖(Π:𝑏𝑠)
[𝑛]

 

and 𝒱𝐷  is compact if lim
𝑛
 ‖𝐷‖(Π:𝑏𝑠)

[𝑛]
= 0. and 𝒱𝐷  is compact if 

lim
𝑛
 (∑  

𝑘

  |∑  

𝑛

𝑟=1

 𝜙𝑟𝑘|

𝑞

)

1/𝑞

= 0. 

Proof. (i) We derive the following equality: 
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‖∑  

𝑛

𝑟=1

 𝐷𝑟‖

ℓ𝑝(𝒯)

∙

= ‖∑ 

𝑛

𝑟=1

 Φ𝑟‖

ℓ𝑝

∙

= ‖∑  

𝑛

𝑟=1

 𝜙𝑟𝑘‖

ℓ𝑞

= (∑  

𝑘

  |∑  

𝑛

𝑟=1

 𝜙𝑟𝑘|

𝑞

)

1/𝑞

. 

Then, from Lemma 3.2.8/(i), we see that ‖𝒱𝐷‖𝜒 = lim sup
𝑛

 (∑  𝑘   |∑  𝑛
𝑟=1  𝜙𝑟𝑘|

𝑞)1/𝑞 and 𝒱𝐷  is compact iff 

lim
𝑛
 (∑  

𝑘

  |∑  

𝑛

𝑟=1

 𝜙𝑟𝑘|

𝑞

)

1/𝑞

= 0. 

(ii) We observe that 

‖∑  

𝑛

𝑟=1

 Φ𝑟 − 𝑓‖

ℓ𝑝

∙

= ‖∑  

𝑛

𝑟=1

 Φ𝑟 − 𝑓‖

ℓ𝑞

= (∑  

𝑘

  |∑  

𝑛

𝑟=1

 𝜙𝑟𝑘 − 𝑓|

𝑞

)

1/𝑞

. (12) 

Let 𝐷 ∈ (ℓ𝑝(𝒯): 𝑐𝑠). By utilizing Lemma 3.2.6, one obtains Φ ∈ (ℓ𝑝: 𝑐𝑠). Thus, from Lemma 3.2.8/(ii), one 

deduces that 

1

2
lim sup

𝑛
 ‖∑  

𝑛

𝑟=1

 Φ𝑟 − 𝑓‖

ℓ𝑝

∙

≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 ‖∑  

𝑛

𝑟=1

 Φ𝑟 − 𝑓‖

ℓ𝑝

∙

, 

which on using (12) gives us 

1

2
lim sup

𝑛
 (∑  

𝑘

  |∑  

𝑛

𝑟=1

 𝜙𝑟𝑘 − 𝑓|

𝑞

)

1/𝑞

≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 (∑  

𝑘

  |∑  

𝑛

𝑟=1

 𝜙𝑟𝑘 − 𝑓|

𝑞

)

1/𝑞

 

and also, 𝒱𝐷  is compact iff 

lim
𝑛
 (∑  

𝑘

  |∑  

𝑛

𝑟=1

 𝜙𝑟𝑘 − 𝑓𝑘|

𝑞

)

1/𝑞

= 0. 

(iii) The proof mirrors the approach of the first part and by utilizing Lemma 3.2.8/(iii). 

Theorem 3.2.9.  

(i). Let 𝐷 ∈ (ℓ∞(𝒯): 𝑐0). Then, ‖𝒱𝐷‖𝜒 = lim sup𝑛  ∑𝑘  |𝜙𝑛𝑘| and 𝒱𝐷  is compact if lim𝑛  ∑𝑘  |𝜙𝑛𝑘| = 0. 

(ii). Let 𝐷 ∈ (ℓ∞(𝒯): 𝑐). In this case, 

1

2
lim sup

𝑛
 (∑  

𝑘

  |𝜙𝑛𝑘 − 𝑓𝑘|) ≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 (∑  

𝑘

  |𝜙𝑛𝑘 − 𝑓𝑘|) 

and 𝒱𝐷  is compact iff lim
𝑛
 (∑  𝑘   |𝜙𝑛𝑘 − 𝑓𝑘 |) = 0. 
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(iii). Let 𝐷 ∈ (ℓ∞(𝒯): ℓ∞). In this case, 

0 ≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

 ∑  

𝑘

|𝜙𝑛𝑘|  

and 𝒱𝐷  is compact if lim
𝑛
 ∑  𝑘 |𝜙𝑛𝑘| = 0. 

(iv). Let 𝐷 ∈ (ℓ∞(𝒯): ℓ1). Then, 

lim
𝑖
 ‖𝐷‖(ℓ∞(𝒯):ℓ1)

(𝑖) ≤ ‖𝒱𝐷‖𝜒 ≤ 4. lim
𝑖
 ‖𝐷‖(ℓ∞(𝒯):ℓ1)

(𝑖) , 

and 𝒱𝐷  is compact iff lim
𝑖
 ‖𝐷‖(ℓ∞(𝒯):ℓ1)

(𝑖)
= 0, where 

‖𝐷‖(ℓ∞(𝒯):ℓ1)
(𝑖) = sup

𝐴∈ℰ𝑖

 (∑  

𝑘

  |∑  

𝑛∈𝐴

 𝜙𝑛𝑘|) . 

. 

Proof. This parallels to the approach employed in Theorem 3.2.7 and therefore it is omitted for brevity. 

 

Theorem 3.2.10. 

(i). Let 𝐷 ∈ (ℓ1(𝒯): 𝑐0). Then, ‖𝒱𝐷‖𝜒 = lim sup𝑛  (sup𝑘  |𝜙𝑛𝑘|) and 𝒱𝐷  is compact iff lim𝑛  (sup𝑘  |𝜙𝑛𝑘|) =

0. 
(ii). Let 𝐷 ∈ (ℓ1(𝒯): 𝑐). Then, 

1

2
lim sup

𝑛
  (sup

𝑘
 |𝜙𝑛𝑘 − 𝑓𝑘|) ≤ ‖𝒱𝐷‖𝜒 ≤ lim sup

𝑛
  (sup

𝑘
 |𝜙𝑛𝑘 − 𝑓𝑘|) 

and 𝒱𝐷  is compact iff lim
𝑛
  (sup

𝑘
 |𝜙𝑛𝑘 − 𝑓𝑘|) = 0. 

(iii). Let 𝐷 ∈ (ℓ1(𝒯): ℓ∞). Then, 0 ≤ ‖𝒱𝐷‖𝜒 ≤ lim sup
𝑛

  (sup
𝑘
 |𝜙𝑛𝑘|) 

and 𝒱𝐷  is compact if lim
𝑛
  (sup

𝑘
 |𝜙𝑛𝑘|) = 0. 

Proof. The proof parallels to the approach employed in Theorem 3.2.7 and therefore it is omitted for brevity. 

4. Conclusion 

Measures of non-compactness have a wide scope in functional analysis. These are also applied in metric 

fixed point theory, in the operator equations' theory in Banach spaces, and in the study of varied differential and 

integral equations. In particular, the characterization of compact operators on BK-spaces, which is the basis of 

our work, makes use of the Hausdorff measure of non-compactness. 

As outlined above, in this study, some properties of ℓ𝑝(𝒯)  for the cases 0 < 𝑝 < 1 and 1 ≤ 𝑝 < ∞ are 

examined and the compactness criteria of the matrix operators on the sequence spaces ℓ𝑝(𝒯) 

for 1 ≤ 𝑝 ≤ ∞ defined by Khan and Meitei (2024) are characterized with by using Hausdorff measure of non-

compactness. 
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In our subsequent studies, we will focus on the main topic of determining the compactness criteria of matrix 

operators defined in sequence spaces by the aid of Hausdorff measure of non-compactness.  
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