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1. Introduction

In recent years, sequence spaces and summability methods have attracted considerable interest due to their
broad applications in analysis. Using matrix domains associated with various summability matrices, many new
sequence spaces have been introduced; see (Altay & Basar, 2006; Basar & Altay, 2003; Yaying & Hazarika,
2020, 2021; Alp & ilkhan, 2019; Alp, 2021; Alp & Kara, 2021; ilkhan & Kara, 2019; Demiriz et al., 2020;
Demiriz & Erdem, 2020, 2023; Alp, 2025). Since any infinite matrix can be viewed as a linear operator between
sequence spaces, the study of such transformations has remained central in summability theory; see (Basar,
2012; Malkowsky, 1997; Mursaleen & Noman, 2010a; Alp & Kara, 2018; Alp, 2023; Dagh, 2022; Dagh &
Yaying, 2023; Gokce, 2023; Kara & Bayrakdar, 2021; Devletli & Kara, 2023). Moreover, compact operators
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and the Hausdorff measure of noncompactness have been widely investigated in this context; see (Basarir &
Kara, 2012a, 2012b; Kara & Basarir, 2011; Mursaleen & Noman, 2011; Mursaleen & Roopaei, 2021).

In some recent papers, the authors (Yaying & Saikia, 2022; Yaying et al., 2024) have constructed
newmatrices by the aid of arithmetic divisor sumfunctions to introduce matrix domains of them in classical
sequence spaces. Later, in (Kara & Aydin, 2025), a new band matrix has been defined using the Euler totient
function together with its summatory function and new sequence spaces has been obtained by the aid of this

matrix.

This study forms the starting point of the present study. In this framework, some sequence spaces are
constructed as the domains of the newly defined band matrix in the spaces of convergent and null sequences.
The paper further identifies the dual spaces of these new spaces and characterizes the associated matrix

transformations.

The final section presents bounds for the Hausdorff measure of noncompactness of bounded linear

operators acting on one of the resulting space.

2. Preliminaries

This section provides the fundamental definitions and preliminary results needed in the subsequent sections.

A sequence space is a linear subspace of the space w of all sequences. The space of all finitely non-zero
sequences wy, the space of all bounded sequences ¢, the space of all convergent sequences c, the space of all
null sequences c, and the space of all absolutely p- summable sequences ¢, are the examples for the classical

sequence spaces. The spaces ¢, ¢ and ¢, are complete normed spaces with||x|l, = [[xllc = llxllc, =

sup|x;|and the space ¢, is a complete normed space With||x||€p = (X; |x;|P)*/? where N = {1,2,3,...}. Unless
ieN

stated otherwise, assume that 1 < p < o and q = ﬁ is the conjugate of p.

A linear topological sequence space X is called a K-space provided that each functional p,,: X - K,
Pm (x) = x,,, is continuous for all m € N, where K is real or complex field. If a K-space X is a complete linear
metric space, then it is called an FK-space. If the topology of an FK-space is normable, then it is called a BK-
space. Let e = (e,) be the sequence with term e, = 1 for all r and e® = (er(i))(i € N) be the sequence with
terms 1 if i = r and 0 if i # r. Given any FK-space X D w, and a sequence x = (x,.) in X, it is said that the

sequence x satisfies the AK-property if (x[1) converges to x, where x4 = Yi_, x,.e™.

Let A = (a;;) be an infinite matrix and A; be the sequence in the ith row of A. The A-transform of a

sequence x = (x;) € w is the sequence Ax obtained by the usual matrix product and its terms are written as
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Ai(x) = z a;jX;

J

provided that the series is convergent for each i € N. If the sequence Ax exists and Ax € Y for all x € X, then

A is called a matrix mapping from the sequence space X into the sequence space Y. (X,Y) denotes the class

of all infinite matrices from X into Y.

The sequence space X 4 called the (matrix) domain of A in the space X is the set

Xyg={x €w:Ax € X}.

A sequence (b;) in a normed space (X, ||.]]) is called a Schauder basis if for any x € X, there exists a

unique scalar sequence (a;) satisfying||x — a;b, + a,b,+...+a;b;|| — 0asi — oo. Then, x = Y; a;b; holds.

Theorem 2.1. (Jarrah & Malkowsky, 2003) Given any triangle A4 and its inverse A, if a normed space X has

a Schauder basis {b(};cy, then {A(bD)};ey is a Schauder basis of the matrix domain X 4.

The following result provides a characterization of certain classes of matrices, V' is used to denote the

family of all finite subsets of N.

Lemma 2.2. (Stieglitz & Tietz, 1977)

Fromto ¢, ¢ ¢ &p 4
o 1. 4 9 14. 16.

c 1 5. 10. 14. 16.

Co 1 6. 11. 14. 16.
2, 2. 7. 12, — 17
£ 3 8. 13. 15 18.

1 A =(a;) € (e te) = (¢,40) = (€0, ¥0) ©
Supz |aij| < o0
i L&
]

holds.

(1)
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2. A= (aij) € (fp,foo) (=

holds.
3. A= (aij) € (flyfoo) (=4

holds.
4, A = (aij) € ('BOO,C) (=4

and

hold.

q
Supz |ay|" < o (2)
CT
sup|ay| < oo 3)
ij
lima;; exists for all j € N 4
4

J J

5. A = (a;;) € (c,c) ©(1), (4) hold and lim }; a;; exists.
L

6. A = (a;) € (co ) © (1) and (4) hold.A = (a;;) € (£,,c) =(2) and (4) hold.
7. A = (ay) € (£, ¢) =(3) and (4) hold.

8. A = (a;) € (£, Co) & limX; |ay;| = 0 holds,
L

9. A= (a;) € (c,c) (1) and

and

hold.

lima;; =0, forallj €N (5)
4

J

10. A = () € (co, co) © (1) and (5) hold.
11. A = (ay)) € (£, o) <(2) and (5) hold.
12. A = (ay)) € (£, ¢o) <(3) and (5) hold.
13. A = (a;) € (s £y) = (¢, 4,) = (c0,8p) ©

holds.

14

jex

sup

KeN :
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14. A = (aij) € (fl,fp) (=

Supz |Cll'j|p < o0
J i

holds.
15. A = (a;j) € (e, t1) = (¢, 1) = (Co, 1) ©

sup ZZaij <Oo=)sup
N,KEN NEN b=

iEN jeK j

16. A = (aij) € ('gpi'gl) (=

<00=)5up Zaij < 00,
KEN &= :
i JEK

Y

iEN

q

iEN

sup

NEN b
]

holds.
17. A = (a;j) € (£1,%1) © sup X; |aij| < ooholds.
J

The multiplier space of the sequence spaces X and Y consists of sequences a € w such that ax € Y for any
x€X and it is denoted by M (X, Y.If Y=+¢,, Y=cs or Y = bs, the multiplier spacesM (X, ¥,),
M (X, cs)and M (X, bs) are called asa-, - and y-duals of the space X and denoted by X%, X# and X7,

respectively.
The following theorem is essential to obtain the §- and y-duals.

Theorem 2.3. (Altay & Basar, 2007) Let B = (b;;) be defined via a sequence a = (a;) € w and the inverse

A = (a;;) of the triangle matrix A = (a;;) by

i

N DI TR Sy
ij =

0 ,ifj >
Then,
Xh=1{a=(a)€wBe X0}
and

XY ={a=(a;) €Ew:BE (X, 4x)}
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Let X be a bounded set in a metric space X, then Hausdorff measure of noncompactness y(X) is defined
by
x(X) = inf{le > 0: X cU/_, B(x;,17),x; € X,1; < &,j €N},

where B(x;,1;) is the open ball centered at x; and radius r; forall i = 1,2,...,].

A linear operator 7: X — Y is said to be compact, if for every bounded sequence x = (x;) in X, the
sequence (T'(x;)) possesses a convergent subsequence in Y, where X and Y are Banach spaces. The notation

I7°||,, stands for the Hausdorff measure of noncompactness of 7', which is defined as

1T, = x(T{x € X:[|x]| = 1})).
The connection between compact operators and the Hausdorff measure of noncompactness lies in the fact that

anoperator" is compact if and only if its Hausdorff measure of noncompactness satisfies ||T||, = 0.

Definition 2.4. (Malkowsky & Rakocevi¢, 1998) Given any BK-space X' 2 w, and any sequence a = (a;) €

w, the value

lalie =supd| > | flxll =1
]

is well defined if 3; a;x; is convergent for all x € X. If a € XP, then it is clear that }; a;x; exists and is finite
forall x € X.
Lemma 2.5. (Malafosse, 2005) Let X be one of the spaces £.,, ¢ or ¢,. Then X8 = £, and ||a||} = 2 lajl.
Lemma 2.6. (Malkowsky & Rakocevi¢, 2000) Given any BK-spaces X', Y and any A € (X, V), there exists a
bounded linear operator 74 such that 7, (x) = Ax for all x € X.
Lemma 2.7. (Malkowsky & Rakocevi¢, 2000) Given any BK-space X 2 w, and A € (X,Y), the statement

ITall = lAll gy = SEEN}?”CAL'”;C <o
holds, where Y is one of the spaces 4, ¢ oOr c,.

In order to estimate the Hausdorff measure of nhoncompactness on c,, the following result is used.

Theorem 2.8. (Rakocevi¢, 1998) Given any bounded set X in ¢, and each operator P,: ¢, — co(m € N) with
Po(x) = (xq,%2,-.-,%X2,0,0,...),

X(0) = Jim (supll(l = B) GOl )
X€X

holds, where I is the identity operator on c,.

Lemma 2.9. (Mursaleen & Noman, 2010b) Given any BK-space X 2 w, the following results hold.
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(@) If A€ (X, 4y), then0 < ||Ty4ll, < limisupllc/lilljc and if li}n”‘ﬂi”;( = 0, then T4 is compact.
(b) If A € (X, cp), then ||Tyll, = limisupllc/lill} and T4 is compact if and only if 1ilm||o‘li||3c =0.
() If X hasAKor X =4¢,,and A € (X,c), then

%“misuplla‘li —all’ < |Tally < 1imi5ur)||o‘li —ally
and 7., is compact if and only if lilmllc/ll- —all% = 0,where a = (a;) and a; = liim a;; forall j € N.
Lemma 2.10. (Mursaleen & Noman, 2010b) Given any BK-space X 2 w,, if A € (X, ¥;), then

Y Y

iEN iEN

* *

lim| sup

< |[T4ll, < 4lim| sup
m \ NeEN, m

NEN;,

X X

andT,; is compact if and only if lim( sup || Xien c/4ll-||§c> = 0,where 2V, denotes the subcollection of N
m \NeNp,

consisting of all subsets of N whose elements are greater than m.
The Euler totient function ¢ gives the number of positive integers less than i that are coprime to i.
The function T defined by T(i) = §-=1 @ (j) denotes the Euler totient summation function. It gives the number

of coprime integer pairs p;,p, with1 < p, <p, <.

In (Kara & Aydin, 2025), the authors have defined the matrix A(p, T) = (6(¢, T);;) as

=D'ITH)

, 1—1<j<i
5(p, Tij = @ (i) l St
0 , otherwise
The inverse A(p, T)™1 = (6(o, T)l-‘jl) has calculated as
1 (p—(]) , if1<j<i
5(p, Ny =TM
o , ifj>i
Also, the authors have introduced the spaces
i .
‘g A — — . (i_j) T(]) p <
p(A(e, T)) ={x=(x;) Ew: ) | (=1) mle < o}(1<p <o)
i j=i-1

and
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£o(8(p, ) = {x = (x)) € w:sup| Z (-1 f>%x|<oo}

3. Banach spaces ¢, (A(p, T)) and c(A(g, T))

In this section, new sequence spaces c,(A(¢, T)) and c(A(p,T)) consisting of sequences whose
A(@, T)-transforms are in the spaces c, and c are introduced. The A(¢, T)-transform of a sequence x = (x;) €

w 1S the sequence y = (y;) with

LON

yi = A, () = Z DD 5

for all i € N. Hence the spaces are

()

()xJ—O}

(A, ) ={x=(x;) € a):lli_)l’glo Z (_1)(i—1)
j=i-1

and
(@@ == ) €wilim Y. (DD exiss)
j=-1

Theorem 3.1. The spaces c,(A(@, T)) and c(A(¢, T)) are Banach sequence spaces with the norm ||. [|a 1)

. 3 : —j) TU)
defined by ||x||acpT) = sup |Z}=i_1 (—1)¢ ])%xj|.

Proof. One can easily prove that [|.||a¢, ) IS @ norm on the spaces co(A(p, T)) and c(A(p, T)).Given
anyCauchy sequence (x%) in co(A(p, T)) or c(A(g, T)), the equality

" = x™lagem = NA@ T = x™)le,,

= [1A(e, Tx' = AP, Tx™ e = 1Y = ™l
means that (y!) is a Cauchy sequence in ¢, or c. Since c, and c are Banach spaces, this Cauchy
sequenceconverges to a sequence y in ¢y or ¢. Set x = A(g, T)"1y. Then
lim|lx’ =~ xllar = lmllA(e, T =),
= lim|lA(p, T)x' = A(p, Dlle,, = lim[[y* = ¥lle,, = 0

holds which yields lim x* = x. This completes the proof.

L—>00

Remark 3.2. The spaces ¢, (A(@, T)) and c(A(¢, T)) are BK-spaces.
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Theorem 3.3. The spaces c,(A(p, T)) and c(A(¢, T)) are linearly isomorphic to ¢, and c, respectively.
Proof. The proof follows with the same way at the proof of Theorem 4.3 in (Kara & Aydin, 2025) by using the
mapping T: co(A(p, T)) = ¢ or T: c(A(e, T)) = ¢, T(w) = A(p, Tu.

Theorem 3.4. The inclusion
co(A(p, T)) € c(A(p, T)) € £ (A, T))

Proof. Let x € cy(A(p, T)). Then, A(p, T)x € ¢, and so A(e, T)x € ¢ which implies that x € c(A(e, T)). In
the same manner, c(A(p, T)) € €4 (A(p, T)) holds.
Choose a sequence y=(y;)€c\c, or y=(y;) €, \c. Hence, the sequencex = (x;) €
c(A(p, T\ co(Ap, T)) or x = (x;) € £es(A(@, T)) \ c(A(g, T)), where
Xi = l QD—O)Y
SEI0M

J

forall i € N.

Theorem 3.5. Consider the sequence b) = (bl.(j)) defined by

¢() . .
y_ )=, ifls<j<
b ={7@ © "=

0, ifj>i,

where b0) € c,(A(p, T)) for each j € N. Then, the following statements hold:

Proof. The proof follows from Theorem 2.3 of (Jarrah & Malkowsky, 2003).

4. The a-, - and y-duals of the spaces c,(A(p, T)) and c(A(p, T))

Firstly, the a-dual of the spaces c,(A(¢p, T)) and c(A(ep, T)) is established.

Theorem 4.1. The a-dual of the spaces c,(A(¢p, T)) and c(A(¢p, T)) is the set

A ={a=(a;) € w: sup Z (p—(],)ai < oo}
NMen [ & T (D)
iEN jeM

Proof. Let a = (a;) € w and A = (a;;) be an infinite matrix with terms

¢(j) : .
—a; <j<

ay = T(i)a‘ , if1<j<i
0 , ifj >
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Hence, it is obtained that

()

aix; = a;yj =
T
L70

Ay

for any x = (x;) € co(A(p, T)) or x = (x;) € c(A(p, T)). It follows that ax € #; for x € c,(A(p, T)) or x €
c(A(p, T)) ifand only if Ay € £, fory € cyory € c. Thatis, a € (co(A(p, T)))* ora € (c(A(p, T)))* ifand
only if A € (cy,¥4;1) Or A € (c,¥;). Hence, by Lemma 2.2, it is deduced that

()
ﬁ&;;w><w
Thus, it is concluded that A = (co(A(p, T)))* = (c(A(p, T)))*.B

By applying Theorem 2.3, the 8- and y-duals of the spaces c,(A(@, T)) and c(A(¢, T)) are established in the

following theorem.
Theorem 4.2. Define the sets A, A, and A5 as follows:

<p(1)

i
A, =3a=(a;) € w:sup Z T(l) ,
J

ieN 1=

exists for each j € N

A, =1qa=(q;) € w: llmz alT(l)

and

Az =45a=(q;) € w: Lllgloz Z alm exists

Then,(co(A(@, )P = 4, N A, and (c(A(p, T)))E = A4, N A, N A;.

Proof. Let a = (a;) € w and B = (b;;) be an infinite matrix with terms

i

() . .
bij: z T(l) , f1<j<i

£
0 i >

Hence, it is obtained that

10
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i i

J i i
0 )
=29\ 270" )= 2\ 2 v Jr =

1 j=1 j=1 \l=]

J

for any x = (x;) € co(A(p, T)) or x = (x;) € c(A(p, T)). It follows that ax € cs for x € c,(A(ep, T)) or x €
c(A(p,T)) ifand only if By € c for y € co or y € c. That is, a € (co(A(p, T)))? or a € (c(A(p, T)))# if and
only if B € (cy,¢) or B € (c,c), respectively. Hence, by Lemma 2.2, it is concluded that (c,(A(¢p, T)))? =
AN A, and (c(A(p, T)))P =4, n4,NA;.

The gamma space can be proved in a similar way.

5. Certain matrix transformations

In this section, characterization of certain classes of matrices is given.

The following result is required to characterize the classes of matrices from c,(A(¢p, T)) and c(A(p, T)) into
£1,¢0,C, 4.

Theorem 5.1. Let X = ¢, or X = c and Y be an arbitrary subset of w. Then, A = (a;;) € (Xaepr),Y) if
andonly if€® = (el(ji)) € (X, c)for each fixedi € Nand€ = (e;;) € (X, V),

where
l

»() .
i a,— , 1<j<l
0 , j>1
and
e_za¢®
ij = ik =7~
£ Tl

Proof. Let A € (Xap 1), Y) and x € Xa(, 1). Then, the equality

j
Z a;jxj = z a;j £ %3’1

j=1 j=1
1 1 0 1
_ ® _ (i)
= z z aikm yVj = Z € Vi (6)
j=1 \k=j j=1

11
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holds. Since Ax exists, it follows that E® € (X, c) for each fixed i € N. It is deduced that Ax = Ey as | — o

in (6). Hence, Ax € Y implies that £y € Y; thatis € € (X, V).

Conversely, suppose that €0 = (efj)) € (X, ¢) for each fixed i € Nand € = (e;;) € (X,Y). Let x €

XacpT)- Then, (e;;) € X8 for each fixed i € N implies that (a;;) € (JCA((p,T))ﬁfor each fixed i € N. Hence, Ax

exists. From equality (6), it follows that Ax = Ey as | - oo. This proves that A € (X 1), Y).

Theorem 5.2. Let A = (a;;) be an infinite matrix. Then, the following statements hold:

1. A€ (cy(A(ep, T)),£y) if and only if

lim ik (p_(]) exists for each fixed i,j € N

B £y BT ()
and
sup Z a ¢0) < o
ik
NMEN 1T=N fem k=) T

2. A€ (cy(A(p, T)),co) if and only if (7), (8),

sup Z aik(p—(i) <
ieN & . T(k)

and

: () _ :
}Lrgk ‘ a”"’ﬁ_ 0 for each j € N.
=j

3. A€ (cy(A(p,T)),c) if and only if (7), (8), (10) and

o)

lim a;, —— exists for each j € N.

e £ T ()

4. A€ (cy(A(p,T)), %) if and only if (7), (8) and (10).

Proof. The proof follows from Lemma 2.2 and Theorem 5.1.

12

! ! 0
sup Z Z Ak Lat2 < oo for each fixed i € N,
e

(7)

(8)

€)

(10)

(11)

(12)
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Theorem 5.3. Let A = (a;;) be an infinite matrix. Then, the following statements hold:

1. A€ (c(A(p, T)),¢,) if and only if (7), (8),

1
llgg Z Z alk T(k) existsfor eachi € N (13)

j=1 k=j

and(9).

2. A€ (c(A(p,T)),coy) ifand only if (7), (8), (13), (11) and

: ()
}H&,Z Z Tk T T 14
3. A€ (c(A(p, T)),c) ifand only if (7), (8), (13), (10), (12) and
| SR
}Lro%z]: ; aikm exists. (15)

4. A€ (c(A(p, T)), %) if and only if (7), (8), (13) and (10).

Proof. The proof follows from Lemma 2.2 and Theorem 5.1.

Corollary 5.4. Let A = (a;;) be an infinite matrix. Then, the following statements hold:

1. A€ (cy(A(p,T)),csy) if and only if (7), (8),

i [ ;
sup Z alk(p—(]) < o0 (16)
(N bed |bmd L T(k)
Jj =1 k=j
and
lim z Z A <P_(l) = (0 for each j € N. (17)
o (o)
=1 k=j
2. A€ (cy(A(p, T)),cs) if and only if (7), (8), (16) and
lim Z Z alk exists for each j € N. (18)
L—>00

=1 k=j
3. A€ (cy(A(ep, T)), bs) if and only if (7), (8) and (16).

13
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Corollary 5.5. LetA = (a;;) be an infinite matrix. Then, the following statements hold:

1. A€ (c(A(g, T)), cs,) if and only if (7), (8), (13), (16), (17) and

TR @

2. A€ (c(Alp, T)), cs) if and only if (7), (8), (13), (16), (18) and

i o)
: () .
llLrgZ Z Z alkﬁ exists. (20)
j =1 k=j

3. A€ (c(A(p, T)),bs) if and only if(7), (8), (13) and (16).

The following resultis required to characterize the classes of matrices from ¢, ¢y, ¢, £ into co(A(¢p, T)) and
c(A(p, T)).

Theorem 5.6. Let X = ¢, or X = c and Y be an arbitrary subset of w.Given any infinite matrix A = (a;;),

define the infinite matrix D = (d;;) as follows:

i Tk
dij = Z (—1)"* <p((i)) Aj-

k=i-1

Then, A = (a;;) € (Y, Xap) if and only if

D = (d;) € (Y, X).

Proof. Let x € Y. Then, the equality

Z:di,-x,- Z Z (0T Day Z -1y 1O i“"f"f

= j=1

holds which means D;(x) = A(g, T);(Ax) for all i € N. That is, D = A(@, T) o A and s0 Ax € Xy, 1 for
any x € Y ifand only if Dx € X forany x € Y.

Theorem 5.7. Let A = (a;;) be an infinite matrix. Then, the following statements hold:
1. A€ (¥,co(A(p, T))) if and only if
i
T(k
lim (—1)k (k)

< Ak j
l
e @ (i)

=0 foreachj €N 21)

14
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and
" e T
i k:zi_l Do Wil < (22)
2. A € (cy co(A(e,T))) if and only if (21) and
wp ) Z (~1)iH— ak,- (23)
3. A€ (c,co(A(p, T))) if and only if (21) and
jim ( Z (—1)ik T((k)) ak].> ~0. (24)
7 \k=i-1
4. A€ (o, co(A(p, T))) if and only if (21) and
im > | Y e, <o (25)
k=i-1

Proof. The proof follows from Lemma 2.2 and Theorem 5.6.

Theorem 5.8. LetA = (a;;) be an infinite matrix. Then, the following statements hold:

1. A€ (¥,c(A(p, T)))if and only if (22)and

i
T(k
lim (-1 al ))ak] exists for each j € N. (26)
1—00
K=i-1

2. A € (cy,c(A(p, T))) if and only if(23) and (26).
3. A€ (c,c(A(p, T))) if and only if (23), (26) and

| SPNIRI() |
llgg ‘ (kzl (—1)ik o0 akj> exists. (27)

J

4. A€ (o, c(A(p, T))) if and only if (26) and

Z (-1

k=i—-1

: Tk
Him Z (=D7* <p((i)) i

k=i-1

1im ak j (28)
1—>00

3

Proof. The proof follows from Lemma 2.2 and Theorem 5.6.

15
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6. Compact operators on the space cy,(A(p, T))
Now, some results are given to use in the sequel.

Lemma 6.1. Leta = (a;) € (co(A(e, T)))E. Then, for all x = (x;) € (A, T))
z a;%x; = z a4;y; (29)
j j

and a = (a;) € 44,

where

o)
 T(k)

(o]
k=j

i = a,(j € N). (30)

Lemma 6.2. Let a = (a;) € (co(A(p, T))P. Then, |lall},apry = 2; 1] < oo, where a=(a;) is the
sequence with terms given by(30).

Proof. If a = (a;) € (co(A(e, T)))#, it follows from Lemma 6.1 that & = (d@;) € ¢, and the equality (29) holds.
The equality ||x||acp,1) = lIYIle,, iMplies that x € B, a1 ifand only if y € B, . Hence, it is deduced that

”a”:‘o(A((p,T)) = sup |Zj ajle = sup |2j &ij| = IIdIIZO-
XEBcy(a(p.T)) Y€B¢,

By Lemma 2.5, it is concluded that
lallcy(apm) = ll@lle, = llalle, = X 16;] < oo

In the rest of the paper, the matrix A = (d;;) is defined by an infinite matrix A = (a;;) such that

provided that the infinite sum is convergent.

Lemma 6.3. Let Y be an arbitrary subset of w and A = (a;;) be an infinite matrix. If A € (co(A(@, T)),Y),
then A € (co, Y) and Ax = Ay for all x € cy(A(p, T)).

Proof. It follows from Lemma 6.1.
Lemma6.4. LetY € {cy, ¢, €} If A € (co(A(p, T)),Y), then

1l = 1l eoiacornan = sup | D Ll | < eo
J

holds.

16
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Theorem 6.5.
1. IfAE€E (CO(A((/), T)),foo), then 0 < ”qu”)( < lim sup Z] |C~ll]| holds.
i

2. IfA € (cy(A(p, T)),c), then

1. . . . . .
Ehm sup; Xl — @ < [[Lally < limsup;¥;|a; —a;

holds.
3. IfA € (co(A(p, T)),cp), then

I£4ll, = limsup;};;|a;;|
holds.
4. 1f A € (co(A(@, T)),2,), then

- ™ - ™
Hmy Al ey agpm ey = ILally = AMe 1Al oacp 1) 0

holds, where [[ A1 4 o1y = SUPnew, (251 Zien @) (r € N).

Proof. (1) Let A € (co(A(p, T)), ). Since the series Y72, a;;x; converges for each i € N, it follows that
A; € (co(A(p, T)))E. Hence, Lemma 6.2 yields

Al acory = lAidlls, = 1A, = (X;1d;1)

for each i € N. By using Lemma 2.9 (a), it is concluded that

0 < [|Lally < limsup Z |a;
' 7

(2) Let A € (co(A(e, T)),c). Then, Lemma 6.3 yields A € (c,, ¢). Hence, from Lemma 2.9 (c), it follows that

1 . ~ ~ 1] % . 3 ~ 1| *

3 1im suplld; = allz, < [1£ally < lim sup|ld; — allz,
where @ = (d;) and d; = limd;; for each j € N.Moreover, Lemma 2.5 implies that

l

NA; — allz, = IIA; — alle, = (X d:; — d;1)

for each i € N. This completes the proof.
(3) Let A € (co(A(, T)), cg).Since

”qu“:(,(A(fp,T)) = ||c/‘ii||z0 = ||c/‘ii||191 = (2j|dij|)

holds for each i € N, it is concluded from Lemma 2.9 (b) that

17
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I£4lly = lim sup E |dj
12 7
J

* *

lim | sup
r NEN;

(4)Let A € (co(A(p, T)),#1).Then, Lemma 6.3 yields A € (co, £,).1t follows from Lemma 2.10 that
< |£4ll, < 4lim| sup

PR PR
NEN;

iEN co iEN

Co

Moreover, Lemma 2.5 implies that

>

iEN

*

iEN

>

iEN

o 7

Co
which completes the proof.

By combining Theorem 6.3 with Lemma 2.9 and Lemma 2.10, we have the following result.

Corollary 6.6.
1. L iscompact for A € (cy(A(p, T)), %) if

2. L iscompact for A € (cy(A(p, T)),c) if and only if

J
3. L iscompact for A € (cy(A(p, T)), o) if and only if
limz | = 0.
L
j

4. L, is compact for A € (cy(A(p, T)),#,) if and only if

. () —

lim|lAll ¢y acp,myr.000 = O

where AN e = sup () 1 Zien ayl)-
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