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1. Introduction 

In recent years, sequence spaces and summability methods have attracted considerable interest due to their 

broad applications in analysis. Using matrix domains associated with various summability matrices, many new 

sequence spaces have been introduced; see (Altay & Başar, 2006; Başar & Altay, 2003; Yaying & Hazarika, 

2020, 2021; Alp & İlkhan, 2019; Alp, 2021; Alp & Kara, 2021; İlkhan & Kara, 2019; Demiriz et al., 2020; 

Demiriz & Erdem, 2020, 2023; Alp, 2025). Since any infinite matrix can be viewed as a linear operator between 

sequence spaces, the study of such transformations has remained central in summability theory; see (Başar, 

2012; Malkowsky, 1997; Mursaleen & Noman, 2010a; Alp & Kara, 2018; Alp, 2023; Dağlı, 2022; Dağlı & 

Yaying, 2023; Gökçe, 2023; Kara & Bayrakdar, 2021; Devletli & Kara, 2023). Moreover, compact operators 
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and the Hausdorff measure of noncompactness have been widely investigated in this context; see (Başarır & 

Kara, 2012a, 2012b; Kara & Başarır, 2011; Mursaleen & Noman, 2011; Mursaleen & Roopaei, 2021). 

In some recent papers, the authors (Yaying & Saikia, 2022; Yaying et al., 2024) have constructed 

newmatrices by the aid of arithmetic divisor sumfunctions to introduce matrix domains of them in classical 

sequence spaces. Later, in (Kara & Aydın, 2025), a new band matrix has been defined using the Euler totient 

function together with its summatory function and new sequence spaces has been obtained by the aid of this 

matrix. 

This study forms the starting point of the present study. In this framework, some sequence spaces are 

constructed as the domains of the newly defined band matrix in the spaces of convergent and null sequences. 

The paper further identifies the dual spaces of these new spaces and characterizes the associated matrix 

transformations. 

The final section presents bounds for the Hausdorff measure of noncompactness of bounded linear 

operators acting on one of the resulting space. 

2. Preliminaries 

This section provides the fundamental definitions and preliminary results needed in the subsequent sections. 

A sequence space is a linear subspace of the space 𝜔 of all sequences. The space of all finitely non-zero 

sequences 𝜔0, the space of all bounded sequences ℓ∞, the space of all convergent sequences 𝑐, the space of all 

null sequences 𝑐0 and the space of all absolutely 𝑝- summable sequences ℓ𝑝  are the examples for the classical 

sequence spaces. The spaces 𝑐0, 𝑐 and ℓ∞ are complete normed spaces with‖𝑥‖ℓ∞
= ‖𝑥‖𝑐 = ‖𝑥‖𝑐0

=

sup
𝑖∈ℕ

 |𝑥𝑖|and the space ℓ𝑝 is a complete normed space with‖𝑥‖ℓ𝑝
= (∑  𝑖   |𝑥𝑖|

𝑝)1/𝑝,where ℕ = {1,2,3, . . . }. Unless 

stated otherwise, assume that 1 < 𝑝 < ∞  and 𝑞 =
𝑝

𝑝−1
 is the conjugate of 𝑝. 

A linear topological sequence space 𝒳 is called a K-space provided that each functional 𝑝𝑚: 𝒳 → 𝕂, 

𝑝𝑚(𝑥) = 𝑥𝑚 is continuous for all 𝑚 ∈ ℕ, where 𝕂 is real or complex field. If a K-space 𝒳 is a complete linear 

metric space, then it is called an FK-space. If the topology of an FK-space is normable, then it is called a BK-

space. Let 𝑒 = (𝑒𝑟) be the sequence with term 𝑒𝑟 = 1 for all 𝑟 and 𝑒(𝑖) = (𝑒𝑟
(𝑖)

)(𝑖 ∈ ℕ) be the sequence with 

terms 1 if 𝑖 = 𝑟 and 0 if 𝑖 ≠ 𝑟. Given any FK-space 𝒳 ⊃ 𝜔0 and a sequence 𝑥 = (𝑥𝑟) in 𝒳, it is said that the 

sequence 𝑥 satisfies the AK-property if (𝑥[𝑖]) converges to 𝑥, where 𝑥[𝑖] = ∑  𝑖
𝑟=1 𝑥𝑟𝑒(𝑟). 

Let 𝒜 = (𝑎𝑖𝑗) be an infinite matrix and 𝒜𝑖 be the sequence in the 𝑖th row of 𝒜. The 𝒜-transform of a 

sequence 𝑥 = (𝑥𝑖) ∈ 𝜔 is the sequence 𝒜𝑥 obtained by the usual matrix product and its terms are written as 
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𝒜𝑖(𝑥) = ∑  

𝑗

𝑎𝑖𝑗𝑥𝑗 

provided that the series is convergent for each 𝑖 ∈ ℕ. If the sequence 𝒜𝑥 exists and 𝒜𝑥 ∈ 𝒴 for all 𝑥 ∈ 𝒳, then 

𝒜 is called a matrix mapping from the sequence space 𝒳 into the sequence space 𝒴. (𝒳, 𝒴) denotes the class 

of all infinite matrices from 𝒳 into 𝒴. 

The sequence space 𝒳𝒜  called the (matrix) domain of 𝒜 in the space 𝒳  is the set 

𝒳𝒜 = {𝑥 ∈ 𝜔: 𝒜𝑥 ∈ 𝒳}. 

A sequence (𝑏𝑖)  in a normed space (𝒳, ‖. ‖) is called a Schauder basis if for any 𝑥 ∈ 𝒳, there exists a 

unique scalar sequence (𝑎𝑖) satisfying‖𝑥 − 𝑎1𝑏1 + 𝑎2𝑏2+. . . +𝑎𝑖𝑏𝑖‖ ⟶ 0 as 𝑖 → ∞. Then, 𝑥 = ∑  𝑖 𝑎𝑖𝑏𝑖 holds. 

Theorem 2.1.  (Jarrah & Malkowsky, 2003) Given any triangle 𝒜  and its inverse 𝒜̃, if a normed space 𝒳 has 

a Schauder basis {𝑏(𝑖)}𝑖∈ℕ, then {𝒜̃(𝑏(𝑖))}𝑖∈ℕ  is a Schauder basis of the matrix domain 𝒳𝒜 . 

 

The following result provides a characterization of certain classes of matrices, 𝒩 is used to denote the 

family of all finite subsets of ℕ. 

Lemma 2.2.  (Stieglitz & Tietz, 1977) 

From/to ℓ∞ 𝑐 𝑐0 ℓ𝑝 ℓ1 

ℓ∞ 1. 4. 9. 14. 16. 

𝑐 1. 5. 10. 14. 16. 

𝑐0 1. 6. 11. 14. 16. 

ℓ𝑝 2. 7. 12. − 17. 

ℓ1 3. 8. 13. 15 18. 

 

1. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ∞, ℓ∞) = (𝑐, ℓ∞) = (𝑐0, ℓ∞) ⇔ 

sup
𝑖

 ∑  

𝑗

  |𝑎𝑖𝑗| < ∞ (1) 

holds. 
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2. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ𝑝, ℓ∞) ⇔ 

sup
𝑖

 ∑  

𝑗

  |𝑎𝑖𝑗|
𝑞

< ∞ (2) 

holds. 

3. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ1, ℓ∞) ⇔ 

sup
𝑖,𝑗

 |𝑎𝑖𝑗| < ∞ (3) 

holds. 

4. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ∞, 𝑐) ⇔ 

lim
𝑖

 𝑎𝑖𝑗 exists for all 𝑗 ∈ ℕ (4) 

and 

lim
𝑖

 ∑  

𝑗

  |𝑎𝑖𝑗| = ∑  

𝑗

  |lim
𝑖

 𝑎𝑖𝑗| 

hold. 

5. 𝒜 = (𝑎𝑖𝑗) ∈ (𝑐, 𝑐) ⇔(1), (4) hold and lim
𝑖

 ∑  𝑗 𝑎𝑖𝑗 exists. 

6. 𝒜 = (𝑎𝑖𝑗) ∈ (𝑐0, 𝑐) ⇔ (1) and (4) hold.𝒜 = (𝑎𝑖𝑗) ∈ (ℓ𝑝, 𝑐) ⇔(2) and (4) hold. 

7. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ1, 𝑐) ⇔(3) and (4) hold. 

8. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ∞, 𝑐0) ⇔ lim
𝑖

 ∑  𝑗 |𝑎𝑖𝑗| = 0 holds. 

9. 𝒜 = (𝑎𝑖𝑗) ∈ (𝑐, 𝑐0) ⇔(1) and 

lim
𝑖

 𝑎𝑖𝑗 = 0, for all 𝑗 ∈ ℕ (5) 

and 

lim
𝑖

 ∑  

𝑗

 𝑎𝑖𝑗 = 0 

hold. 

10. 𝒜 = (𝑎𝑖𝑗) ∈ (𝑐0, 𝑐0) ⇔ (1) and (5) hold. 

11. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ𝑝, 𝑐0) ⇔(2) and (5) hold. 

12. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ1, 𝑐0) ⇔(3) and (5) hold. 

13. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ∞, ℓ𝑝) = (𝑐, ℓ𝑝) = (𝑐0, ℓ𝑝) ⇔ 

sup
𝐾∈𝒩

 ∑  

𝑖

  |∑  

𝑗∈𝐾

 𝑎𝑖𝑗|

𝑝

< ∞ 

holds. 
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14. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ1, ℓ𝑝) ⇔ 

sup
𝑗

 ∑  

𝑖

  |𝑎𝑖𝑗|
𝑝

< ∞ 

holds. 

15. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ∞, ℓ1) = (𝑐, ℓ1) = (𝑐0, ℓ1) ⇔ 

sup
𝑁,𝐾∈𝒩

  |∑  

𝑖∈𝑁

 ∑  

𝑗∈𝐾

 𝑎𝑖𝑗| < ∞ ⇔ sup
𝑁∈𝒩

 ∑  

𝑗

  |∑  

𝑖∈𝑁

 𝑎𝑖𝑗| < ∞ ⇔ sup
𝐾∈𝒩

 ∑  

𝑖

  |∑  

𝑗∈𝐾

 𝑎𝑖𝑗| < ∞. 

16. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ𝑝, ℓ1) ⇔ 

sup
𝑁∈𝒩

 ∑  

𝑗

  |∑  

𝑖∈𝑁

 𝑎𝑖𝑗|

𝑞

< ∞ 

holds. 

17. 𝒜 = (𝑎𝑖𝑗) ∈ (ℓ1, ℓ1) ⇔ sup
𝑗

 ∑  𝑖 |𝑎𝑖𝑗| < ∞holds. 

The multiplier space of the sequence spaces 𝒳 and 𝒴 consists of sequences 𝑎 ∈ 𝜔 such that 𝑎𝑥 ∈ 𝒴 for any 

𝑥 ∈ 𝒳  and it is denoted by ℳ(𝒳, 𝒴).If 𝒴 = ℓ1, 𝒴 = 𝑐𝑠 or 𝒴 = 𝑏𝑠, the multiplier spacesℳ(𝒳, ℓ1), 

ℳ(𝒳, 𝑐𝑠)and ℳ(𝒳, 𝑏𝑠) are called as𝛼-, 𝛽- and 𝛾-duals of the space 𝒳 and denoted by 𝒳𝛼, 𝒳𝛽 and 𝒳𝛾 , 

respectively. 

The following theorem is essential to obtain the 𝛽- and 𝛾-duals. 

Theorem 2.3. (Altay & Başar, 2007)  Let ℬ = (𝑏𝑖𝑗) be defined via a sequence 𝑎 = (𝑎𝑖) ∈ 𝜔 and the inverse 

𝒜̃ = (𝑎̃𝑖𝑗) of the triangle matrix 𝒜 = (𝑎𝑖𝑗) by 

𝑏𝑖𝑗 = {
∑  

𝑖

𝑙=𝑗

 𝑎𝑙𝑎̃𝑙𝑗 ,  if 1 ≤ 𝑗 ≤ 𝑖

0 ,  if 𝑗 > 𝑖.

 

Then, 

𝒳𝒜
𝛽

= {𝑎 = (𝑎𝑖) ∈ 𝜔: ℬ ∈ (𝒳, 𝑐)}, 

and 

𝒳𝒜
𝛾

= {𝑎 = (𝑎𝑖) ∈ 𝜔: ℬ ∈ (𝒳, ℓ∞)}. 
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Let 𝒳̃ be a bounded set in a metric space 𝒳, then Hausdorff measure of noncompactness 𝜒(𝒳̃) is defined 

by 

𝜒(𝒳̃) = inf{𝜀 > 0: 𝒳̃ ⊆∪𝑖=1
𝑗

𝐵(𝑥𝑖, 𝑟𝑖), 𝑥𝑖 ∈ 𝒳, 𝑟𝑖 < 𝜀, 𝑗 ∈ ℕ}, 

where 𝐵(𝑥𝑖, 𝑟𝑖) is the open ball centered at 𝑥𝑖 and radius 𝑟𝑖 for all 𝑖 = 1,2, . . . , 𝑗. 

A linear operator 𝒯: 𝒳 → 𝒴  is said to be compact, if for every bounded sequence 𝑥 = (𝑥𝑖) in 𝒳, the 

sequence (𝒯(𝑥𝑖)) possesses a convergent subsequence in 𝒴, where 𝒳 and 𝒴 are Banach spaces. The notation 

‖𝒯‖𝜒 stands for the Hausdorff measure of noncompactness of 𝒯, which is defined as 

‖𝒯‖𝜒 = 𝜒(𝒯({𝑥 ∈ 𝒳: ‖𝑥‖ = 1})). 

The connection between compact operators and the Hausdorff measure of noncompactness lies in the fact that 

anoperator𝒯 is compact if and only if its Hausdorff measure of noncompactness satisfies ‖𝒯‖𝜒 = 0. 

Definition 2.4. (Malkowsky & Rakočević, 1998) Given any BK-space 𝒳 ⊇ 𝜔0 and any sequence 𝑎 = (𝑎𝑗) ∈

𝜔, the value 

‖𝑎‖𝒳
∗ = sup {|∑  

𝑗

 𝑎𝑗𝑥𝑗| : ‖𝑥‖ = 1} 

is well defined if ∑  𝑗 𝑎𝑗𝑥𝑗 is convergent for all 𝑥 ∈ 𝒳. If 𝑎 ∈ 𝒳𝛽, then it is clear that ∑  𝑗 𝑎𝑗𝑥𝑗 exists and is finite 

for all 𝑥 ∈ 𝒳. 

Lemma 2.5.  (Malafosse, 2005) Let 𝒳 be one of the spaces ℓ∞, 𝑐 or 𝑐0. Then 𝒳𝛽 = ℓ1 and ‖𝑎‖𝒳
∗ = ∑  𝑗 |𝑎𝑗|. 

Lemma 2.6.  (Malkowsky & Rakočević, 2000) Given any BK-spaces 𝒳, 𝒴  and any 𝒜 ∈ (𝒳, 𝒴), there exists a 

bounded linear operator 𝒯𝒜 such that 𝒯𝒜(𝑥) = 𝒜𝑥 for all 𝑥 ∈ 𝒳. 

Lemma 2.7. (Malkowsky & Rakočević, 2000) Given any BK-space 𝒳 ⊇ 𝜔0  and 𝒜 ∈ (𝒳, 𝒴), the statement 

‖𝒯𝒜‖ = ‖𝒜‖(𝒳,𝒴) = sup
𝑖∈ℕ

 ‖𝒜𝑖‖𝒳
∗ < ∞ 

holds, where 𝒴 is one of the spaces ℓ∞, 𝑐 or 𝑐0. 

In order to estimate the Hausdorff measure of noncompactness on 𝑐0, the following result is used. 

Theorem 2.8. (Rakočević, 1998) Given any bounded set 𝒳̃  in 𝑐0  and each operator 𝑃𝑚: 𝑐0 → 𝑐0(𝑚 ∈ ℕ) with 

𝑃𝑚(𝑥) = (𝑥1, 𝑥2, . . . , 𝑥𝑚 , 0,0, . . . ), 

𝜒(𝒳̃) = lim
𝑚→∞

  (sup
𝑥∈𝒳̃

 ‖(𝐼 − 𝑃𝑚)(𝑥)‖∞) 

holds, where 𝐼 is the identity operator on 𝑐0. 

Lemma 2.9. (Mursaleen & Noman, 2010b) Given any BK-space 𝒳 ⊇ 𝜔0, the following results hold. 
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(a) If  𝒜 ∈ (𝒳, ℓ∞), then 0 ≤ ‖𝒯𝒜‖𝜒 ≤ limsup
𝑖

‖𝒜𝑖‖𝒳
∗  and if  lim

𝑖
‖𝒜𝑖‖𝒳

∗ = 0, then 𝒯𝒜 is compact. 

(b) If  𝒜 ∈ (𝒳, 𝑐0), then ‖𝒯𝒜‖𝜒 = limsup
𝑖

‖𝒜𝑖‖𝒳
∗  and 𝒯𝒜 is compact if and only if  lim

𝑖
‖𝒜𝑖‖𝒳

∗ = 0. 

(c) If 𝒳 has AK or 𝒳 = ℓ∞, and  𝒜 ∈ (𝒳, 𝑐 ), then 

1

2
limsup

𝑖
‖𝒜𝑖 − 𝑎‖𝒳

∗ ≤ ‖𝒯𝒜‖𝜒 ≤ limsup
𝑖

‖𝒜𝑖 − 𝑎‖𝒳
∗  

and 𝒯𝒜 is compact if and only if  lim
𝑖

‖𝒜𝑖 − 𝑎‖𝒳
∗ = 0,where 𝑎 = (𝑎𝑗) and 𝑎𝑗 = lim

𝑖
𝑎𝑖𝑗 for all 𝑗 ∈ ℕ. 

 Lemma 2.10.  (Mursaleen & Noman, 2010b) Given any BK-space 𝒳 ⊇ 𝜔0, if 𝒜 ∈ (𝒳, ℓ1), then 

lim
𝑚

 ( sup
𝑁∈𝒩𝑚

 ‖∑  

𝑖∈𝑁

 𝒜𝑖‖

𝒳

∗

) ≤ ‖𝒯𝒜‖𝜒 ≤ 4lim
𝑚

 ( sup
𝑁∈𝒩𝑚

 ‖∑  

𝑖∈𝑁

 𝒜𝑖‖

𝒳

∗

) 

and𝒯𝒜 is compact if and only if lim
𝑚

 ( sup
𝑁∈𝒩𝑚

 ‖ ∑  𝑖∈𝑁  𝒜𝑖‖𝒳
∗ ) = 0,where 𝒩𝑚 denotes the subcollection of 𝒩  

consisting of all subsets of ℕ whose elements are greater than 𝑚. 

The Euler totient function 𝜑 gives the number of positive integers less than 𝑖 that are coprime to 𝑖. 

The function ⊤ defined by ⊤(𝑖) = ∑  𝑖
𝑗=1 𝜑(𝑗) denotes the Euler totient summation function. It gives the number 

of coprime integer pairs 𝑝1, 𝑝2 with 1 ≤ 𝑝1 ≤ 𝑝2 ≤ 𝑖. 

In (Kara & Aydın, 2025), the authors have defined the matrix Δ(𝜑, ⊤) = (𝛿(𝜑, ⊤)𝑖𝑗)  as 

𝛿(𝜑, ⊤)𝑖𝑗 = {
(−1)𝑖−𝑗⊤(𝑗)

𝜑(𝑖)
, 𝑖 − 1 ≤ 𝑗 ≤ 𝑖

0 , otherwise

 

The inverse Δ(𝜑, ⊤)−1 = (𝛿(𝜑, ⊤)𝑖𝑗
−1) has calculated as 

𝛿(𝜑, ⊤)𝑖𝑗
−1 = {

𝜑(𝑗)

⊤(𝑖)
,  if 1 ≤ 𝑗 ≤ 𝑖

0 ,  if 𝑗 > 𝑖

 

Also, the authors have introduced the spaces 

ℓ𝑝(Δ(𝜑, ⊤)) = {𝑥 = (𝑥𝑖) ∈ 𝜔: ∑  

𝑖

| ∑  

𝑖

𝑗=𝑖−1

  (−1)(𝑖−𝑗)
⊤(𝑗)

𝜑(𝑖)
𝑥𝑗|𝑝 < ∞}(1 ≤ 𝑝 < ∞) 

and 
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ℓ∞(Δ(𝜑, ⊤)) = {𝑥 = (𝑥𝑖) ∈ 𝜔: sup
𝑖

 | ∑  

𝑖

𝑗=𝑖−1

  (−1)(𝑖−𝑗)
⊤(𝑗)

𝜑(𝑖)
𝑥𝑗| < ∞}. 

3. Banach spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)) 

In this section, new sequence spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤))  consisting of sequences whose 

Δ(𝜑, ⊤)-transforms are in the spaces 𝑐0 and 𝑐 are introduced. The Δ(𝜑, ⊤)-transform of a sequence 𝑥 = (𝑥𝑖) ∈

𝜔 is the sequence 𝑦 = (𝑦𝑖) with 

𝑦𝑖 = Δ(𝜑, ⊤)𝑖(𝑥) = ∑  

𝑖

𝑗=𝑖−1

  (−1)(𝑖−𝑗)
⊤(𝑗)

𝜑(𝑖)
𝑥𝑗 

for all 𝑖 ∈ ℕ. Hence the spaces are 

𝑐0(Δ(𝜑, ⊤)) = {𝑥 = (𝑥𝑖) ∈ 𝜔: lim
𝑖→∞

  ∑  

𝑖

𝑗=𝑖−1

(−1)(𝑖−𝑗)
⊤(𝑗)

𝜑(𝑖)
𝑥𝑗 = 0} 

and 

𝑐(Δ(𝜑, ⊤)) = {𝑥 = (𝑥𝑖) ∈ 𝜔: lim
𝑖→∞

  ∑  

𝑖

𝑗=𝑖−1

(−1)(𝑖−𝑗)
⊤(𝑗)

𝜑(𝑖)
𝑥𝑗 exists}. 

Theorem 3.1.  The spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)) are Banach sequence spaces with the norm ‖. ‖Δ(𝜑,⊤) 

defined by ‖𝑥‖Δ(𝜑,⊤) = sup
𝑖∈ℕ

  |∑  𝑖
𝑗=𝑖−1   (−1)(𝑖−𝑗) ⊤(𝑗)

𝜑(𝑖)
𝑥𝑗|. 

Proof. One can easily prove that ‖. ‖Δ(𝜑,⊤) is a norm on the spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)).Given 

anyCauchy sequence (𝑥𝑖) in 𝑐0(Δ(𝜑, ⊤)) or 𝑐(Δ(𝜑, ⊤)), the equality 

‖𝑥𝑖 − 𝑥𝑚‖Δ(𝜑,⊤) = ‖Δ(𝜑, ⊤)(𝑥𝑖 − 𝑥𝑚)‖ℓ∞

= ‖Δ(𝜑, ⊤)𝑥𝑖 − Δ(𝜑, ⊤)𝑥𝑚‖ℓ∞
= ‖𝑦𝑖 − 𝑦𝑚‖ℓ∞

 

means that (𝑦𝑖) is a Cauchy sequence in 𝑐0 or 𝑐. Since 𝑐0 and 𝑐 are Banach spaces, this Cauchy 

sequenceconverges to a sequence 𝑦 in 𝑐0 or 𝑐. Set 𝑥 = Δ(𝜑, ⊤)−1𝑦. Then 

lim
𝑖→∞

 ‖𝑥𝑖 − 𝑥‖Δ(𝜑,⊤) = lim
𝑖→∞

 ‖Δ(𝜑, ⊤)(𝑥𝑖 − 𝑥)‖ℓ∞

= lim
𝑖→∞

 ‖Δ(𝜑, ⊤)𝑥𝑖 − Δ(𝜑, ⊤)𝑥‖ℓ∞
= lim

𝑖→∞
 ‖𝑦𝑖 − 𝑦‖ℓ∞

= 0
 

holds which yields lim
𝑖→∞

 𝑥𝑖 = 𝑥. This completes the proof. 

Remark 3.2.  The spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)) are BK-spaces. 
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Theorem 3.3.  The spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)) are linearly isomorphic to 𝑐0 and 𝑐, respectively. 

Proof. The proof follows with the same way at the proof of Theorem 4.3 in (Kara & Aydın, 2025) by using the 

mapping 𝑇: 𝑐0(Δ(𝜑, ⊤)) → 𝑐0 or 𝑇: 𝑐(Δ(𝜑, ⊤)) → 𝑐, 𝑇(𝑢) = Δ(𝜑, ⊤)𝑢. 

 

Theorem 3.4.  The inclusion 

𝑐0(Δ(𝜑, ⊤)) ⊂ 𝑐(Δ(𝜑, ⊤)) ⊂ ℓ∞(Δ(𝜑, ⊤)) 

Proof. Let 𝑥 ∈ 𝑐0(Δ(𝜑, ⊤)). Then, Δ(𝜑, ⊤)𝑥 ∈ 𝑐0 and so Δ(𝜑, ⊤)𝑥 ∈ 𝑐 which implies that 𝑥 ∈ 𝑐(Δ(𝜑, ⊤)). In 

the same manner, 𝑐(Δ(𝜑, ⊤)) ⊂ ℓ∞(Δ(𝜑, ⊤)) holds. 

Choose a sequence 𝑦 = (𝑦𝑖) ∈ 𝑐 ∖ 𝑐0 or 𝑦 = (𝑦𝑖) ∈ ℓ∞ ∖ 𝑐. Hence, the sequence𝑥 = (𝑥𝑖) ∈

𝑐(Δ(𝜑, ⊤)) ∖ 𝑐0(Δ(𝜑, ⊤)) or 𝑥 = (𝑥𝑖) ∈ ℓ∞(Δ(𝜑, ⊤)) ∖ 𝑐(Δ(𝜑, ⊤)), where 

𝑥𝑖 = ∑  

𝑖

𝑗=1

𝜑(𝑗)

⊤(𝑖)
𝑦𝑗 

for all 𝑖 ∈ ℕ. 

Theorem 3.5.  Consider the sequence 𝑏(𝑗) = (𝑏𝑖
(𝑗)

)  defined by 

𝑏𝑖
(𝑗)

= {

𝜑(𝑗)

⊤(𝑖)
,  if 1 ≤ 𝑗 ≤ 𝑖

0 ,  if 𝑗 > 𝑖,

 

where 𝑏(𝑗) ∈ 𝑐0(Δ(𝜑, ⊤)) for each 𝑗 ∈ ℕ. Then, the following statements hold: 

Proof. The proof follows from Theorem 2.3 of (Jarrah & Malkowsky, 2003). 

 

4. The 𝛼-, 𝛽- and 𝛾-duals of the spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)) 

Firstly, the 𝛼-dual of the spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)) is established. 

Theorem 4.1.  The 𝛼-dual of the spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)) is the set 

𝐴 = {𝑎 = (𝑎𝑖) ∈ 𝜔: sup
𝑁,𝑀∈𝒩

  |∑  

𝑖∈𝑁

  ∑  

𝑗∈𝑀

 
𝜑(𝑗)

⊤(𝑖)
𝑎𝑖| < ∞}. 

Proof. Let 𝑎 = (𝑎𝑖) ∈ 𝜔 and 𝒜 = (𝑎𝑖𝑗) be an infinite matrix with terms 

𝑎𝑖𝑗 = {

𝜑(𝑗)

⊤(𝑖)
𝑎𝑖 ,  if 1 ≤ 𝑗 ≤ 𝑖

0 ,  if 𝑗 > 𝑖.
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Hence, it is obtained that 

𝑎𝑖𝑥𝑖 = ∑  

𝑖

𝑗=1

𝜑(𝑗)

⊤(𝑖)
𝑎𝑖𝑦𝑗 = 𝒜𝑖𝑦 

for any 𝑥 = (𝑥𝑖) ∈ 𝑐0(Δ(𝜑, ⊤)) or 𝑥 = (𝑥𝑖) ∈ 𝑐(Δ(𝜑, ⊤)). It follows that 𝑎𝑥 ∈ ℓ1 for 𝑥 ∈ 𝑐0(Δ(𝜑, ⊤)) or 𝑥 ∈

𝑐(Δ(𝜑, ⊤)) if and only if 𝒜𝑦 ∈ ℓ1 for 𝑦 ∈ 𝑐0 or 𝑦 ∈ 𝑐. That is, 𝑎 ∈ (𝑐0(Δ(𝜑, ⊤)))𝛼 or 𝑎 ∈ (𝑐(Δ(𝜑, ⊤)))𝛼 if and 

only if 𝒜 ∈ (𝑐0, ℓ1) or 𝒜 ∈ (𝑐, ℓ1). Hence, by Lemma 2.2, it is deduced that 

sup
𝑁,𝑀∈𝒩

  |∑  

𝑖∈𝑁

  ∑  

𝑗∈𝑀

 
𝜑(𝑗)

⊤(𝑖)
𝑎𝑖| < ∞. 

Thus, it is concluded that 𝐴 = (𝑐0(Δ(𝜑, ⊤)))𝛼 = (𝑐(Δ(𝜑, ⊤)))𝛼.◻ 

By applying Theorem 2.3, the 𝛽- and 𝛾-duals of the spaces 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)) are established in the 

following theorem. 

Theorem 4.2.  Define the sets 𝐴1, 𝐴2 and 𝐴3 as follows: 

𝐴1 = {𝑎 = (𝑎𝑖) ∈ 𝜔: sup
𝑖∈ℕ

 ∑  

𝑗

  |∑  

𝑖

𝑙=𝑗

 𝑎𝑙

𝜑(𝑗)

⊤(𝑙)
| < ∞}, 

𝐴2 = {𝑎 = (𝑎𝑖) ∈ 𝜔: lim
𝑖→∞

 ∑  

𝑖

𝑙=𝑗

 𝑎𝑙

𝜑(𝑗)

⊤(𝑙)
 exists for each 𝑗 ∈ ℕ} 

and 

𝐴3 = {𝑎 = (𝑎𝑖) ∈ 𝜔: lim
𝑖→∞

 ∑  

𝑗

 ∑  

𝑖

𝑙=𝑗

 𝑎𝑙

𝜑(𝑗)

⊤(𝑙)
 exists }. 

Then,(𝑐0(Δ(𝜑, ⊤)))𝛽 = 𝐴1 ∩ 𝐴2 and (𝑐(Δ(𝜑, ⊤)))𝛽 = 𝐴1 ∩ 𝐴2 ∩ 𝐴3. 

Proof. Let 𝑎 = (𝑎𝑖) ∈ 𝜔 and ℬ = (𝑏𝑖𝑗) be an infinite matrix with terms 

𝑏𝑖𝑗 = {
∑  

𝑖

𝑙=𝑗

 𝑎𝑙

𝜑(𝑗)

⊤(𝑙)
,  if 1 ≤ 𝑗 ≤ 𝑖

0 ,  if 𝑗 > 𝑖.

 

Hence, it is obtained that 
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∑  

𝑖

𝑗=1

𝑎𝑗𝑥𝑗 = ∑  

𝑖

𝑗=1

𝑎𝑗 (∑  

𝑗

𝑙=1

 
𝜑(𝑙)

⊤(𝑗)
𝑦𝑙) = ∑  

𝑖

𝑗=1

(∑  

𝑖

𝑙=𝑗

 𝑎𝑙

𝜑(𝑗)

⊤(𝑙)
) 𝑦𝑗 = ℬ𝑖𝑦 

for any 𝑥 = (𝑥𝑖) ∈ 𝑐0(Δ(𝜑, ⊤)) or 𝑥 = (𝑥𝑖) ∈ 𝑐(Δ(𝜑, ⊤)). It follows that 𝑎𝑥 ∈ 𝑐𝑠 for 𝑥 ∈ 𝑐0(Δ(𝜑, ⊤)) or 𝑥 ∈

𝑐(Δ(𝜑, ⊤)) if and only if ℬ𝑦 ∈ 𝑐 for 𝑦 ∈ 𝑐0 or 𝑦 ∈ 𝑐. That is, 𝑎 ∈ (𝑐0(Δ(𝜑, ⊤)))𝛽 or 𝑎 ∈ (𝑐(Δ(𝜑, ⊤)))𝛽 if and 

only if ℬ ∈ (𝑐0, 𝑐) or ℬ ∈ (𝑐, 𝑐), respectively. Hence, by Lemma 2.2, it is concluded that (𝑐0(Δ(𝜑, ⊤)))𝛽 =

𝐴1 ∩ 𝐴2 and (𝑐(Δ(𝜑, ⊤)))𝛽 = 𝐴1 ∩ 𝐴2 ∩ 𝐴3. 

The gamma space can be proved in a similar way. 

 

5. Certain matrix transformations 

In this section, characterization of certain classes of matrices is given. 

The following result is required to characterize the classes of matrices from 𝑐0(Δ(𝜑, ⊤)) and 𝑐(Δ(𝜑, ⊤)) into 

ℓ1, 𝑐0, 𝑐, ℓ∞. 

Theorem 5.1.  Let 𝒳 = 𝑐0 or 𝒳 = 𝑐 and 𝒴 be an arbitrary subset of 𝜔. Then, 𝒜 = (𝑎𝑖𝑗) ∈ (𝒳Δ(𝜑,⊤), 𝒴) if 

andonly ifℰ(𝑖) = (𝑒𝑙𝑗
(𝑖)

) ∈ (𝒳, 𝑐)for each fixed𝑖 ∈ ℕandℰ = (𝑒𝑖𝑗) ∈ (𝒳, 𝒴), 

where 

𝑒𝑙𝑗
(𝑖)

= {
∑  

𝑙

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
, 1 ≤ 𝑗 ≤ 𝑙

0 , 𝑗 > 𝑙

 

and 

𝑒𝑖𝑗 = ∑  

∞

𝑘=𝑗

𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
. 

Proof. Let 𝒜 ∈ (𝒳Δ(𝜑,⊤), 𝒴) and 𝑥 ∈ 𝒳Δ(𝜑,⊤). Then, the equality 

∑  

𝑙

𝑗=1

 𝑎𝑖𝑗𝑥𝑗 = ∑  

𝑙

𝑗=1

 𝑎𝑖𝑗 (∑  

𝑗

𝑙=1

 
𝜑(𝑙)

⊤(𝑗)
𝑦𝑙)

= ∑  

𝑙

𝑗=1

 (∑  

𝑙

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
) 𝑦𝑗 = ∑  

𝑙

𝑗=1

  𝑒𝑙𝑗
(𝑖)

𝑦𝑗 (6)
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holds. Since 𝒜𝑥 exists, it follows that ℰ(𝑖) ∈ (𝒳, 𝑐)  for each fixed 𝑖 ∈ ℕ. It is deduced that 𝒜𝑥 = ℰ𝑦 as 𝑙 → ∞ 

in (6). Hence, 𝒜𝑥 ∈ 𝒴 implies that ℰ𝑦 ∈ 𝒴; that is ℰ ∈ (𝒳, 𝒴). 

Conversely, suppose that ℰ(𝑖) = (𝑒𝑙𝑗
(𝑖)

) ∈ (𝒳, 𝑐) for each fixed 𝑖 ∈ ℕand ℰ = (𝑒𝑖𝑗) ∈ (𝒳, 𝒴). Let 𝑥 ∈

𝒳Δ(𝜑,⊤). Then, (𝑒𝑖𝑗) ∈ 𝒳𝛽  for each fixed 𝑖 ∈ ℕ implies that (𝑎𝑖𝑗) ∈ (𝒳Δ(𝜑,⊤))𝛽for each fixed 𝑖 ∈ ℕ. Hence, 𝒜𝑥 

exists. From equality (6), it follows that 𝒜𝑥 = ℰ𝑦 as 𝑙 → ∞. This proves that 𝒜 ∈ (𝒳Δ(𝜑,⊤), 𝒴). 

Theorem 5.2.  Let 𝒜 = (𝑎𝑖𝑗) be an infinite matrix. Then, the following statements hold: 

1. 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), ℓ1) if and only if 

sup
𝑙∈ℕ

 ∑  

𝑙

𝑗=1

  |∑  

𝑙

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
| < ∞ for each fixed 𝑖 ∈ ℕ, (7) 

lim
𝑙→∞

 ∑  

𝑙

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
 exists for each fixed 𝑖, 𝑗 ∈ ℕ (8) 

and 

sup
𝑁,𝑀∈𝒩

  |∑  

𝑖∈𝑁

  ∑  

𝑗∈𝑀

 ∑  

∞

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
| < ∞. (9) 

2. 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐0) if and only if (7), (8), 

sup
𝑖∈ℕ

 ∑  

𝑗

  |∑  

∞

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
| < ∞ (10) 

and 

lim
𝑖→∞

 ∑  

∞

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
= 0 for each 𝑗 ∈ ℕ. (11) 

 

3. 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐) if and only if (7), (8), (10) and 

lim
𝑖→∞

 ∑  

∞

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
 exists for each 𝑗 ∈ ℕ. (12) 

4. 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), ℓ∞) if and only if (7), (8) and (10). 

 

Proof. The proof follows from Lemma 2.2 and Theorem 5.1. 
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Theorem 5.3.  Let 𝒜 = (𝑎𝑖𝑗) be an infinite matrix. Then, the following statements hold: 

1. 𝒜 ∈ (𝑐(Δ(𝜑, ⊤)), ℓ1) if and only if (7), (8), 

lim
𝑙→∞

 ∑  

𝑙

𝑗=1

 ∑  

𝑙

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
 exists for each 𝑖 ∈ ℕ (13) 

and(9). 

 

2. 𝒜 ∈ (𝑐(Δ(𝜑, ⊤)), 𝑐0) if and only if (7), (8), (13), (11) and 

lim
𝑖→∞

 ∑  

𝑗

 ∑  

∞

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
= 0. (14) 

3. 𝒜 ∈ (𝑐(Δ(𝜑, ⊤)), 𝑐) if and only if (7), (8), (13), (10), (12) and 

lim
𝑖→∞

 ∑  

𝑗

 ∑  

∞

𝑘=𝑗

 𝑎𝑖𝑘

𝜑(𝑗)

⊤(𝑘)
 exists. (15) 

4. 𝒜 ∈ (𝑐(Δ(𝜑, ⊤)), ℓ∞) if and only if (7), (8), (13) and (10). 

Proof. The proof follows from Lemma 2.2 and Theorem 5.1. 

 

Corollary 5.4.  Let 𝒜 = (𝑎𝑖𝑗) be an infinite matrix. Then, the following statements hold: 

1. 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐𝑠0) if and only if (7), (8), 

sup
𝑖∈ℕ

 ∑  

𝑗

  |∑  

𝑖

𝑙=1

 ∑  

∞

𝑘=𝑗

 𝑎𝑙𝑘

𝜑(𝑗)

⊤(𝑘)
| < ∞ (16) 

and 

lim
𝑖→∞

 ∑  

𝑖

𝑙=1

 ∑  

∞

𝑘=𝑗

 𝑎𝑙𝑘

𝜑(𝑗)

⊤(𝑘)
= 0 for each 𝑗 ∈ ℕ. (17) 

2. 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐𝑠) if and only if (7), (8), (16) and 

lim
𝑖→∞

 ∑  

𝑖

𝑙=1

 ∑  

∞

𝑘=𝑗

 𝑎𝑙𝑘

𝜑(𝑗)

⊤(𝑘)
 exists for each 𝑗 ∈ ℕ. (18) 

3. 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑏𝑠) if and only if (7), (8) and (16). 
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Corollary 5.5.  Let 𝒜 = (𝑎𝑖𝑗) be an infinite matrix. Then, the following statements hold: 

1. 𝒜 ∈ (𝑐(Δ(𝜑, ⊤)), 𝑐𝑠0) if and only if (7), (8), (13), (16), (17) and 

lim
𝑖→∞

 ∑  

𝑗

 ∑  

𝑖

𝑙=1

 ∑  

∞

𝑘=𝑗

 𝑎𝑙𝑘

𝜑(𝑗)

⊤(𝑘)
= 0. (19) 

2. 𝒜 ∈ (𝑐(Δ(𝜑, ⊤)), 𝑐𝑠) if and only if (7), (8), (13), (16), (18) and 

lim
𝑖→∞

 ∑  

𝑗

 ∑  

𝑖

𝑙=1

 ∑  

∞

𝑘=𝑗

 𝑎𝑙𝑘

𝜑(𝑗)

⊤(𝑘)
 exists. (20) 

3. 𝒜 ∈ (𝑐(Δ(𝜑, ⊤)), 𝑏𝑠) if and only if(7), (8), (13) and (16). 

 

The following resultis required to characterize the classes of matrices from ℓ1, 𝑐0, 𝑐, ℓ∞ into 𝑐0(Δ(𝜑, ⊤)) and 

𝑐(Δ(𝜑, ⊤)). 

Theorem 5.6.  Let 𝒳 = 𝑐0 or 𝒳 = 𝑐 and 𝒴 be an arbitrary subset of 𝜔.Given any infinite matrix 𝒜 = (𝑎𝑖𝑗), 

define the infinite matrix 𝒟 = (𝑑𝑖𝑗) as follows: 

𝑑𝑖𝑗 = ∑  

𝑖

𝑘=𝑖−1

(−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗 . 

Then, 𝒜 = (𝑎𝑖𝑗) ∈ (𝒴, 𝒳Δ(𝜑,⊤)) if and only if 

𝒟 = (𝑑𝑖𝑗) ∈ (𝒴, 𝒳). 

Proof. Let 𝑥 ∈ 𝒴. Then, the equality 

∑  

∞

𝑗=1

𝑑𝑖𝑗𝑥𝑗 = ∑  

∞

𝑗=1

( ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗) 𝑥𝑗 = ∑  

𝑖

𝑘=𝑖−1

(−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
(∑  

∞

𝑗=1

 𝑎𝑘𝑗𝑥𝑗) 

holds which means 𝒟𝑖(𝑥) = Δ(𝜑, ⊤)𝑖(𝒜𝑥) for all 𝑖 ∈ ℕ. That is, 𝒟 = Δ(𝜑, ⊤) ∘ 𝒜 and so 𝒜𝑥 ∈ 𝒳Δ(𝜑,⊤) for 

any 𝑥 ∈ 𝒴 if and only if 𝒟𝑥 ∈ 𝒳 for any 𝑥 ∈ 𝒴. 

Theorem 5.7.  Let 𝒜 = (𝑎𝑖𝑗) be an infinite matrix. Then, the following statements hold: 

1. 𝒜 ∈ (ℓ1, 𝑐0(Δ(𝜑, ⊤))) if and only if 

lim
𝑖→∞

  ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗 = 0 for each 𝑗 ∈ ℕ (21) 
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and 

sup
𝑖,𝑗∈ℕ

  | ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗| < ∞. (22) 

2. 𝒜 ∈ (𝑐0, 𝑐0(Δ(𝜑, ⊤))) if and only if (21) and 

sup
𝑖∈ℕ

 ∑  

𝑗

  | ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗| < ∞. (23) 

3. 𝒜 ∈ (𝑐, 𝑐0(Δ(𝜑, ⊤))) if and only if (21) and 

lim
𝑖→∞

 ∑  

𝑗

 ( ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗) = 0. (24) 

4. 𝒜 ∈ (ℓ∞, 𝑐0(Δ(𝜑, ⊤))) if and only if (21) and 

lim
𝑖→∞

 ∑  

𝑗

  | ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗| = 0. (25) 

Proof. The proof follows from Lemma 2.2 and Theorem 5.6. 

Theorem 5.8.  Let 𝒜 = (𝑎𝑖𝑗) be an infinite matrix. Then, the following statements hold: 

1. 𝒜 ∈ (ℓ1, 𝑐(Δ(𝜑, ⊤))) if and only if (22)and 

lim
𝑖→∞

  ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗 exists for each 𝑗 ∈ ℕ. (26) 

2. 𝒜 ∈ (𝑐0, 𝑐(Δ(𝜑, ⊤))) if and only if(23) and (26). 

3. 𝒜 ∈ (𝑐, 𝑐(Δ(𝜑, ⊤))) if and only if (23), (26) and 

lim
𝑖→∞

 ∑  

𝑗

 ( ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗)  exists. (27) 

4. 𝒜 ∈ (ℓ∞, 𝑐(Δ(𝜑, ⊤))) if and only if (26) and 

lim
𝑖→∞

 ∑  

𝑗

  | ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗| = ∑  

𝑗

  |lim
𝑖→∞

  ∑  

𝑖

𝑘=𝑖−1

  (−1)𝑖−𝑘
⊤(𝑘)

𝜑(𝑖)
𝑎𝑘𝑗| . (28) 

 

Proof. The proof follows from Lemma 2.2 and Theorem 5.6. 
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6. Compact operators on the space 𝑐0(Δ(𝜑, ⊤)) 

Now, some results are given to use in the sequel. 

Lemma 6.1.  Let 𝑎 = (𝑎𝑗) ∈ (𝑐0(Δ(𝜑, ⊤)))𝛽. Then, for all 𝑥 = (𝑥𝑗) ∈ 𝑐0(Δ(𝜑, ⊤)) 

∑  

𝑗

 𝑎𝑗𝑥𝑗 = ∑  

𝑗

  𝑎̃𝑗𝑦𝑗 (29) 

and 𝑎̃ = (𝑎̃𝑗) ∈ ℓ1, 

where 

𝑎̃𝑗 = ∑  

∞

𝑘=𝑗

 
𝜑(𝑗)

⊤(𝑘)
𝑎𝑘(𝑗 ∈ ℕ). (30) 

Lemma 6.2.  Let 𝑎 = (𝑎𝑗) ∈ (𝑐0(Δ(𝜑, ⊤)))𝛽. Then, ‖𝑎‖𝑐0(Δ(𝜑,⊤))
∗ = ∑  𝑗 |𝑎̃𝑗| < ∞, where 𝑎̃ = (𝑎̃𝑗) is the 

sequence with terms given by(30). 

Proof. If 𝑎 = (𝑎𝑗) ∈ (𝑐0(Δ(𝜑, ⊤)))𝛽, it follows from Lemma 6.1 that 𝑎̃ = (𝑎̃𝑗) ∈ ℓ1 and the equality (29) holds. 

The equality ‖𝑥‖Δ(𝜑,⊤) = ‖𝑦‖ℓ∞
 implies that 𝑥 ∈ 𝐵𝑐0(Δ(𝜑,⊤)) if and only if 𝑦 ∈ 𝐵𝑐0

. Hence, it is deduced that 

‖𝑎‖𝑐0(Δ(𝜑,⊤))
∗ = sup

𝑥∈𝐵𝑐0(Δ(𝜑,⊤))

 |∑  𝑗  𝑎𝑗𝑥𝑗| = sup
𝑦∈𝐵𝑐0

 |∑  𝑗   𝑎̃𝑗𝑦𝑗| = ‖𝑎̃‖𝑐0
∗ . 

By Lemma 2.5, it is concluded that 

‖𝑎‖𝑐0(Δ(𝜑,⊤))
∗ = ‖𝑎̃‖𝑐0

∗ = ‖𝑎̃‖ℓ1
= ∑  𝑗 |𝑎̃𝑗| < ∞. 

In the rest of the paper, the matrix 𝒜̃ = (𝑎̃𝑖𝑗) is defined by an infinite matrix 𝒜 = (𝑎𝑖𝑗) such that 

𝑎̃𝑖𝑗 = ∑  

∞

𝑘=𝑗

 
𝜑(𝑗)

⊤(𝑘)
 

provided that the infinite sum is convergent. 

Lemma 6.3.  Let 𝒴 be an arbitrary subset of 𝜔 and 𝒜 = (𝑎𝑖𝑗) be an infinite matrix. If 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝒴), 

then 𝒜̃ ∈ (𝑐0, 𝒴) and 𝒜𝑥 = 𝒜̃𝑦 for all 𝑥 ∈ 𝑐0(Δ(𝜑, ⊤)). 

Proof. It follows from Lemma 6.1. 

Lemma 6.4.  Let 𝒴 ∈ {𝑐0, 𝑐, ℓ∞}. If 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝒴), then 

‖ℒ𝒜‖ = ‖𝒜‖(𝑐0(Δ(𝜑,⊤)),𝒴) = sup
𝑖

 (∑  

𝑗

  |𝑎̃𝑖𝑗|) < ∞ 

holds. 
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Theorem 6.5.   

1. If 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), ℓ∞), then 0 ≤ ‖ℒ𝒜‖𝜒 ≤ lim sup
𝑖

 ∑  𝑗 |𝑎̃𝑖𝑗| holds. 

2. If 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐), then 

1

2
lim sup𝑖  ∑𝑗  |𝑎̃𝑖𝑗 − 𝑎̃𝑗| ≤ ‖ℒ𝒜‖𝜒 ≤ lim sup𝑖  ∑𝑗  |𝑎̃𝑖𝑗 − 𝑎̃𝑗| 

holds. 

3. If 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐0), then 

‖ℒ𝒜‖𝜒 = lim sup𝑖  ∑𝑗  |𝑎̃𝑖𝑗| 

holds. 

4. If 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), ℓ1), then 

lim𝑟  ‖𝒜‖(𝑐0(Δ(𝜑,⊤)),ℓ1)
(𝑟)

≤ ‖ℒ𝒜‖𝜒 ≤ 4lim𝑟  ‖𝒜‖(𝑐0(Δ(𝜑,⊤)),ℓ1)
(𝑟)

 

holds, where ‖𝒜‖(𝑐0(Δ(𝜑,⊤)),ℓ1)
(𝑟)

= sup𝑁∈𝒩𝑟
 (∑𝑗  |∑𝑖∈𝑁  𝑎̃𝑖𝑗|)(𝑟 ∈ ℕ). 

Proof. (1) Let 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), ℓ∞). Since the series ∑  ∞
𝑗=1 𝑎𝑖𝑗𝑥𝑗 converges for each 𝑖 ∈ ℕ, it follows that 

𝒜𝑖 ∈ (𝑐0(Δ(𝜑, ⊤)))𝛽. Hence, Lemma 6.2 yields 

‖𝒜𝑖‖𝑐0(Δ(𝜑,⊤))
∗ = ‖𝒜̃𝑖‖𝑐0

∗ = ‖𝒜̃𝑖‖ℓ1
= (∑𝑗  |𝑎̃𝑖𝑗|) 

for each 𝑖 ∈ ℕ. By using Lemma 2.9 (a), it is concluded that 

0 ≤ ‖ℒΛ‖𝜒 ≤ lim sup
𝑖

 (∑  

𝑗

  |𝑎̃𝑖𝑗|) . 

(2) Let 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐). Then, Lemma 6.3 yields 𝒜̃ ∈ (𝑐0, 𝑐). Hence, from Lemma 2.9 (c), it follows that 

1

2
lim sup

𝑖
 ‖𝒜̃𝑖 − 𝑎̃‖𝑐0

∗ ≤ ‖ℒΛ‖𝜒 ≤ lim sup
𝑖

 ‖𝒜̃𝑖 − 𝑎̃‖𝑐0
∗ , 

where 𝑎̃ = (𝑎̃𝑗) and 𝑎̃𝑗 = lim
𝑖

 𝑎̃𝑖𝑗 for each 𝑗 ∈ ℕ.Moreover, Lemma 2.5 implies that 

‖𝒜̃𝑖 − 𝑎̃‖𝑐0
∗ = ‖𝒜̃𝑖 − 𝑎̃‖ℓ1

= (∑𝑗  |𝑎̃𝑖𝑗 − 𝑎̃𝑗|) 

for each 𝑖 ∈ ℕ. This completes the proof. 

(3) Let 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐0).Since 

‖𝒜𝑖‖𝑐0(Δ(𝜑,⊤))
∗ = ‖𝒜̃𝑖‖𝑐0

∗ = ‖𝒜̃𝑖‖ℓ1
= (∑𝑗  |𝑎̃𝑖𝑗|) 

holds for each 𝑖 ∈ ℕ, it is concluded from Lemma 2.9 (b) that 
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‖ℒ𝒜‖𝜒 = lim sup
𝑖

 (∑  

𝑗

  |𝑎̃𝑖𝑗|) . 

(4)Let 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), ℓ1).Then, Lemma 6.3 yields 𝒜̃ ∈ (𝑐0, ℓ1).It follows from Lemma 2.10 that 

lim
𝑟

 ( sup
𝑁∈𝒩𝑟

 ‖∑  

𝑖∈𝑁

  𝒜̃𝑖‖

𝑐0

∗

) ≤ ‖ℒ𝒜‖𝜒 ≤ 4lim
𝑟

 ( sup
𝑁∈𝒩𝑟

 ‖∑  

𝑖∈𝑁

  𝒜̃𝑖‖

𝑐0

∗

) . 

Moreover, Lemma 2.5  implies that 

‖∑  

𝑖∈𝑁

 𝒜̃𝑖‖

𝑐0

∗

= ‖∑  

𝑖∈𝑁

𝒜̃𝑖‖

ℓ1

= (∑  

𝑗

  |∑  

𝑖∈𝑁

  𝑎̃𝑖𝑗|) 

which completes the proof. 

By combining Theorem 6.3 with Lemma 2.9 and Lemma 2.10, we have the following result. 

 

Corollary 6.6. 

1. ℒ𝒜  is compact for 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), ℓ∞) if 

lim
𝑖

 ∑  

𝑗

  |𝑎̃𝑖𝑗| = 0. 

2. ℒ𝒜  is compact for 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐) if and only if 

lim
𝑖

 ∑  

𝑗

  |𝑎̃𝑖𝑗 − 𝑎̃𝑗| = 0. 

3. ℒ𝒜  is compact for 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), 𝑐0) if and only if 

lim
𝑖

 ∑  

𝑗

  |𝑎̃𝑖𝑗| = 0. 

4. ℒ𝒜  is compact for 𝒜 ∈ (𝑐0(Δ(𝜑, ⊤)), ℓ1) if and only if 

lim
𝑟

 ‖𝒜‖(𝑐0(Δ(𝜑,⊤)),ℓ1)
(𝑟)

= 0, 

where ‖𝒜‖(𝑐0(Δ(𝜑,⊤)),ℓ1)
(𝑟)

= sup
𝑁∈𝒩𝑟

 (∑  𝑗   | ∑  𝑖∈𝑁   𝑎̃𝑖𝑗|). 
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