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Abstract: William Henry Ruckle introduced the notion of arithmetic convergence in the sense that a sequence 𝑔 defined on 

the set of natural numbers ℕ is said to be arithmetic convergent if for each 𝜀 > 0 there is an integer 𝑛 such that for every integer 

𝑚, |𝑔(𝑚) − 𝑔(〈𝑚, 𝑛〉)| < 𝜀, where 〈𝑚, 𝑛〉 denotes the greatest common divisor of m and n. In this paper, the notion of arithmetic 

convergence has been extended to cone metric space. Using the concept of arithmetic convergence, arithmetic continuity and 

arithmetic compactness have been defined in cone metric spaces and give some interesting results. 
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I. Introduction 

The concept of cone metric spaces is a very recent and interesting generalization of usual metric space where 

the set of real numbers is replaced by an ordered Banach space. After the initial introduction of this space by 

Huang and Zhang (2007), a lot of work has been done on this structure, especially on fixed point theory. In 

this paper, we focus on a different direction and study arithmetic convergence, arithmetic continuity and related 

concepts in cone metric space. However, it should be noted that due to the absence of real numbers (which is 

replaced by an ordered Banach space), the methods        of proofs are not always analogous to the usual metric 

case. 

Ruckle (2012), introduced the notion arithmetic convergence as a sequence 𝑥 =  (𝑥𝑚) defined on the set 

of natural numbers ℕ is said to be arithmetic convergent if for each 𝜀 >  0 there is an integer 𝑛 such that 

for every integer 𝑚, we have |𝑥𝑚 − 𝑥〈𝑚,𝑛〉| < 𝜀. Here 〈𝑚, 𝑛〉 denotes the greatest common divisor of 𝑚 and 

𝑛. For details on arithmetic convergence and arithmetic continuity, we refer to (Yaying and Hazarika, 2017a, 

2017b, 2017c, 2018). 

In this article, we first introduce the concept of arithmetic convergence and using this notion we define 

arithmetic continuity in a cone metric space and prove some interesting results. Finally, we introduce arithmetic 

compactness and give some interesting results. 
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II. Cone Metric Spaces 

Let us recall some definitions and results on cone metric spaces which can be found in (Huang and Zhang, 

2007). 

Definition 1. A subset 𝑃 of a real Banach space 𝐸 is called a cone if and only if 

(1) 𝑃 is closed, nonempty and 𝑃 ≠  {𝜃} ; 

(2) If 𝑎, 𝑏 ∈  ℝ+ and 𝑥, 𝑦 ∈  𝑃, then 𝑎𝑥 +  𝑏𝑦 ∈  𝑃 ; 

(3) If both 𝑥 ∈  𝑃 and −𝑥 ∈  𝑃, then 𝑥 =  𝜃. 

Given a cone 𝑃 in 𝐸, we define a partial ordering ≤ on 𝐸 with respect to 𝑃 by 𝑥 ≤ 𝑦 if and only if 𝑦 −

𝑥 ∈ 𝑃. We shall write 𝑥 <  𝑦 to indicate that 𝑥 ≤ 𝑦 but 𝑥 = 𝑦, while 𝑥 ≪ 𝑦 will stand for 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡 𝑃 

(interior of 𝑃). 

Throughout the text, we always suppose that 𝐸 is a Banach space, 𝑃 is a solid cone i.e. 𝑖𝑛𝑡 𝑃 ≠ 𝜙 in 𝐸 

and ≤ is a partial ordering with respect to 𝑃. 

Definition 2. A cone metric space is an ordered pair (𝑋, 𝑑), where 𝑋 is a non-empty set and 

𝑑: 𝑋 × 𝑋 → 𝐸 is a mapping satisfying: 

(i) 𝜃 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋; 

(ii) 𝑑(𝑥, 𝑦)  =  𝜃 if and only if 𝑥 =  𝑦; 

(iii)𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈  𝑋; 

(iv) 𝑑(𝑥, 𝑦)  ≤  𝑑(𝑥, 𝑧)  +  𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈  𝑋. 

Example 1. Let 𝐸 = ℝ2, 𝑃 = {(𝑥, 𝑦) ∈ 𝐸: 𝑥, 𝑦 ≥ 0} ⊂ ℝ2  and 𝑑: 𝑋 × 𝑋 → 𝐸  be such that 𝑑(𝑥, 𝑦)  =

 (|𝑥 − 𝑦|, 𝛼|𝑥 − 𝑦|), where 𝛼 ≥ 0 is a constant and 𝑥, 𝑦 ∈ 𝑋. Then it is well known that (𝑋, 𝑑) is a 

cone metric space. 

Definition 3 (Convergence). A sequence (𝑥𝑚)𝑛∈ℕ  converges to 𝑥0 ∈  𝑋 if for every 𝑐 ∈ 𝐸  with 𝜃 ≪

𝑐 (𝑖. 𝑒. 𝑐 − 𝜃 ∈  𝑖𝑛𝑡 𝑃) there exists a natural number 𝑁 such that 𝑑(𝑥𝑚, 𝑥0) ≪ 𝑐  ∀𝑚 ≥  𝑁. 

We denote this by writing 𝑥𝑚 → 𝑥0. 

Definition 4 (Cauchyness). Let (𝑋, 𝑑) be a cone metric space. We say that a sequence (𝑥𝑚)𝑚∈ℕ is cauchy if 

for every 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐 there exists 𝑁 ∈ ℕ such that for  𝑚 ≥  𝑛 ≥  𝑁, 𝑑(𝑥𝑛, 𝑥𝑚)  ≪ 𝑐 holds. 

Definition 5 (Sequencial Compactness). A set 𝑆 ⊂ 𝑋 is sequencially compact if every sequence in 𝑋 has a 

convergent subsequence. 
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Definition 6. Let (𝑋, 𝑑) be a cone metric space and 𝑓: 𝑋 → 𝐸. Then, the function 𝑓 is called 

uniformly continuous on 𝑋 if for 𝜀 > 0 and 𝑐 ∈  𝐸 with 𝜃 ≪ 𝑐 

 𝑑(𝑥, 𝑦) ≪ 𝑐 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀 ∀𝑥, 𝑦 ∈ 𝑋. 

Lemma 2.1 (Radenovic and Kadelburg, 2011) 

(1) If  𝑢 ≤  𝑣 and 𝑣 ≪ 𝑤, then 𝑢 ≪ 𝑤. 

(2) If 𝑢 ≪ 𝑣 and 𝑣 ≤  𝑤, then 𝑢 ≪ 𝑤. 

(3) If 𝑢 ≪ 𝑣 and 𝑣 ≪ 𝑤, then 𝑢 ≪ 𝑤. 

(4) If 𝜃 ≤ 𝑢 ≪ 𝑐 for each 𝑐 ∈ 𝑖𝑛𝑡 𝑃 then 𝑢 = 𝜃. 

III. Arithmetic continuity in cone metric space 

In this section we introduce the concept of arithmetic continuity and arithmetic compactness in a cone metric 

space and establish some interesting results related to these notions. 

Definition 7. A sequence 𝑥 = (𝑥𝑚) is called arithmetically convergent in a cone metric space (𝑋, 𝑑) if for 

every 𝑐 ∈ 𝐸  with 𝜃 ≪ 𝑐  (𝑖. 𝑒.  𝑐 − 𝜃 ∈ 𝑖𝑛𝑡 𝑃) there is an integer 𝑛 such that for every integer 𝑚, we 

have, 𝑑(𝑥𝑚, 𝑥⟨𝑚,𝑛⟩) ≪ 𝑐. 

Definition 8. Let (𝑋, 𝑑𝑋)  and (𝑌, 𝑑𝑌)  be two cone metric spaces. A function  𝑓 ∶ 𝑋 → 𝑌  is 

arithmetic continuous if it transforms arithmetic convergent sequences in 𝑋 to arithmetic convergent 

sequences in 𝑌 . In other words, the sequence   (𝑥𝑛)  is arithmetic convergent implies the sequence 

(𝑓(𝑥𝑛)) is also arithmetic convergent. 

Theorem 3.1. The composition of two arithmetic continuous functions in a cone metric space (𝑋, 𝑑) is 

again arithmetic continuous. 

Proof. Let f and g be two arithmetic continuous functions. We have to prove that the function 𝑓 ∘ 𝑔(𝑥𝑚)  =

 𝑓 (𝑔(𝑥𝑚)) is arithmetic continuous function. 

Let (𝑥𝑚) be any arithmetic convergence sequence in the cone metric space 𝑋. Since 𝑔 is arithmetic continuous, 

so the sequence (𝑔(𝑥𝑚)) is also arithmetic convergent. Furthermore, it is given that 𝑓 is arithmetic continuous, 

hence it transforms arithmetic convergence sequence (𝑔(𝑥𝑚)) to arithmetic convergence sequence (𝑓(𝑔(𝑥𝑚))). 

Hence the result follows. 

Definition 9. A sequence of functions (𝑓𝑚)  from a cone metric space (𝑋, 𝑑𝑋)  to a cone metric space 

(𝑌, 𝑑𝑌)  is said to be arithmetic convergent if for 𝑐′ ∈  𝐸′  with 𝜃′ ≪ 𝑐′  and ∀ 𝑥 ∈ 𝑋  there exists an 

integer 𝑛 such that for every integer 𝑚 
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𝑑𝑌  (𝑓𝑚(𝑥), 𝑓⟨𝑚,𝑛⟩(𝑥)) ≪ 𝑐′. 

Note that, here we have taken 𝑑𝑌 as a cone metric from 𝑌 ×  𝑌 to a real Banach space 𝐸′ with a cone 

𝑃′ ⊂ 𝐸′ and 𝜃′ is zero in 𝐸′. 

Theorem 3.2. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be two cone metric spaces. If 𝑓: 𝑋 → 𝑌 is uniformly continuous 

then it is arithmetic continuous. 

Proof. Let 𝑓 be uniformly continuous and (𝑥𝑚) be any arithmetic convergence sequence in 𝑋. Since 𝑓 is uniformly 

continuous, for a given 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐 such that for every 𝑥, 𝑦 with 𝑑𝑋(𝑥, 𝑦) ≪ 𝑐, 𝑑𝑌(𝑓(𝑥), 𝑓(𝑦)) ≪ 𝑐′. 

Again, the sequence (𝑥𝑚) is arithmetic convergent, hence for the same 𝑐 ∈ 𝐸 there exists a positive integer 𝑛 

such that 

𝑑𝑋(𝑥𝑚, 𝑥⟨𝑚,𝑛⟩) ≪ 𝑐 for each 𝑚 ⇒ 𝑑𝑌(𝑓(𝑥𝑚), 𝑓(𝑥⟨𝑚,𝑛⟩)) ≪ 𝑐′ for each 𝑚 

⇒ the sequence (𝑓(𝑥𝑚)) is arithmetic convergent. 

⇒ the function 𝑓 is arithmetic continuous. 

This completes the proof. 

Theorem 3.3. If (𝑓𝑚) be a sequence of arithmetic continuous functions from a cone metric space (𝑋, 𝑑𝑋) 

to a cone metric space (𝑌, 𝑑𝑌) and (𝑥0) is a point in 𝑋 such that 

lim
𝑥→𝑥0

𝑓𝑚(𝑥) = 𝑦𝑚, 

then (𝑦𝑚) is also arithmetic convergent. 

Proof. Since the sequence (𝑓𝑚) is arithmetic convergent, therefore, for 𝑐′ ∈ 𝐸′ with 𝜃′ ≪ 𝑐′ and ∀ 𝑥 ∈ 𝑋 

there exists an integer 𝑛 such that for every integer 𝑚 

𝑑𝑌(𝑓𝑚(𝑥), 𝑓⟨𝑚,𝑛⟩(𝑥)) ≪ 𝑐′. 

Keeping 𝑛, 𝑚 fixed and letting 𝑥 → 𝑥0, 

𝑑𝑌(𝑦𝑚, 𝑦⟨𝑚,𝑛⟩) ≪ 𝑐′, ∀𝑚.  

Hence, the sequence (𝑦𝑚) is arithmetic convergent. 
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Theorem 3.4. If (𝑓𝑚) is a sequence of arithmetic continuous functions from a cone metric space (𝑋, 𝑑𝑋) 

to a cone metric space (𝑌, 𝑑𝑌) and (𝑓𝑚) converges uniformly to a function 𝑓, then 𝑓 is arithmetic 

continuous. 

Proof. Let 𝑐′ ∈ 𝐸′ with 𝜃′ ≪ 𝑐′ and (𝑥𝑚) be any arithmetic convergent sequence in 𝑋. 

Since, 𝑓𝑚 → 𝑓 uniformly, there exist a positive integer 𝑁 such that 

𝑑𝑌(𝑓(𝑥), 𝑓𝑚(𝑥)) ≪
𝑐′

3
, ∀ 𝑚 ≥  𝑁 and 𝑥 ∈  𝑋. (3.1) 

In particular for 𝑚 = 𝑚1, we have  

 

𝑑𝑌 (𝑓𝑚1
(𝑥), 𝑓(𝑥)) ≪

𝑐′

3
.   (3.2) 

Furthermore, (𝑓𝑚) is given to be a sequence of arithmetic continuous functions, therefore, 

𝑑𝑌 (𝑓𝑚1
(𝑥𝑚), 𝑓𝑚1

 (𝑥⟨𝑚,𝑛⟩ )) ≪
𝑐′

3
,                                                               (3.3) 

Also, from (3.1), 

𝑑𝑌  (𝑓(𝑥⟨𝑚,𝑛⟩), 𝑓𝑚1 (𝑥⟨𝑚,𝑛⟩)) ≪
𝑐′

3
.                                                             (3.4) 

 Thus, from (3.2), (3.3), (3.4) 

𝑑𝑌(𝑓(𝑥⟨𝑚,𝑛⟩), 𝑓(𝑥𝑚))   

=  𝑑𝑌 (𝑓(𝑥⟨𝑚,𝑛⟩), 𝑓𝑚1
(𝑥⟨𝑚,𝑛⟩))  +  𝑑𝑌 (𝑓𝑚1

 (𝑥⟨𝑚,𝑛⟩), 𝑓𝑚1
 (𝑥𝑚))  +  𝑑𝑌 (𝑓𝑚1

(𝑥𝑚), 𝑓(𝑥𝑚))   

≪ 𝑐′.  

Thus, 𝑓 transforms arithmetic convergent sequence in 𝑋 to arithmetic convergent sequence in 𝑌. Hence 𝑓 is 

arithmetic continuous function. 

Theorem 3.5. The set of all arithmetic continuous functions from cone metric space (𝑋, 𝑑𝑋) to cone metric 

space (𝑌, 𝑑𝑌) is a closed subset of all continuous functions i.e. 𝐴𝐶(𝑋, 𝑌) = 𝐴𝐶(𝑋, 𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  where 𝐴𝐶(𝑋, 𝑌) is 

the set of all arithmetic continuous functions from cone metric space (𝑋, 𝑑𝑋) to cone metric space (𝑌, 𝑑𝑌) 

and 𝐴𝐶(𝑋, 𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes the closure of 𝐴𝐶(𝑋, 𝑌). 

Proof: Let 𝑓 ∈ 𝐴𝐶(𝑋, 𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Then there exists a sequence of points in 𝐴𝐶(𝑋, 𝑌) such that 𝑙𝑖𝑚 𝑓𝑚 = 𝑓. Let 𝑐′ ≪

𝐸′ with 𝜃′ ≪ 𝑐′ and (𝑥𝑚) be any arithmetic convergent sequence in 𝑋. 

Since, 𝑓𝑚 → 𝑓 uniformly, there exist a positive integer 𝑁 such that 

𝑑𝑌(𝑓(𝑥), 𝑓𝑚(𝑥)) ≪
𝑐′

3
, ∀ 𝑚 ≥  𝑁 and 𝑥 ∈  𝑋. (3.5) 

In particular for 𝑚 = 𝑚1, we have  
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𝑑𝑌 (𝑓𝑚1
(𝑥), 𝑓(𝑥)) ≪

𝑐′

3
.   (3.6) 

Furthermore, (𝑓𝑚) is given to be a sequence of arithmetic continuous functions, therefore, 

𝑑𝑌 (𝑓𝑚1
(𝑥𝑚), 𝑓𝑚1

(𝑥⟨𝑚,𝑛⟩)) ≪
𝑐′

3
,  (3.7) 

Also, from (3.5), 

𝑑𝑌(𝑓(𝑥⟨𝑚,𝑛⟩), 𝑓𝑚1
(𝑥⟨𝑚,𝑛⟩)) ≪

𝑐′

3
. (3.8)  

Thus, from (3.6), (3.7), (3.8) 

𝑑𝑌(𝑓(𝑥⟨𝑚,𝑛⟩), 𝑓(𝑥𝑚))   

=  𝑑𝑌(𝑓(𝑥⟨𝑚,𝑛⟩), 𝑓𝑚1
(𝑥⟨𝑚,𝑛⟩))  +  𝑑𝑌(𝑓𝑚1

(𝑥⟨𝑚,𝑛⟩), 𝑓𝑚1
(𝑥𝑚))  +  𝑑𝑌(𝑓𝑚1

(𝑥𝑚), 𝑓(𝑥𝑚))   

≪ 𝑐′.  

Hence f is arithmetic continuous function. So 𝑓 ∈ 𝐴𝐶(𝑋, 𝑌). This completes the proof.  

Corollary 3.1. The set of all arithmetic continuous functions from a cone metric space (𝑋, 𝑑𝑋) to cone 

metric space (𝑌, 𝑑𝑌) is a complete subspace of the space of all continuous functions. 

Arithmetic Compactness 

Definition 10. A subset A of a cone metric space (𝑋, 𝑑) is called arithmetic compact if every sequence in 

𝐴 has arithmetic convergent subsequence. 

Theorem 4.1. An arithmetic continuous image of an arithmetic compact subset of a cone metric space 

(𝑋, 𝑑𝑋) is arithmetic compact. 

Proof. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be cone metric spaces. Let 𝑓: 𝑋 → 𝑌 be arithmetic continuous function and 

𝐴 ⊂ 𝑋  be arithmetic compact. Let (𝑦𝑚)  be a sequence in  𝑓(𝐴) .  Then we can write 𝑦𝑚 = 𝑓(𝑥𝑚) 

where 𝑥𝑚 ∈ 𝑋 for each 𝑚 ∈ ℕ. Since 𝐴 is arithmetic compact, there exists a forward convergent subsequence 

(𝑥𝑚𝑘
) of (𝑥𝑚). Again, it is given that 𝑓 is arithmetic continuous, this implies that 𝑓(𝑥𝑚𝑘

) is arithmetic convergent 

subsequence of 𝑓(𝑥𝑚). Hence, 𝑓(𝐴) is arithmetic compact. 

Theorem 4.2. Any closed subset of an arithmetic compact subset of a cone metric space (𝑋, 𝑑) is 

arithmetic compact. 

Proof. Let 𝐴 be any arithmetic compact subset of 𝑋 and 𝐵 be a closed subset of 𝐴.  Let 𝑥 = (𝑥𝑚) be any 

sequence of points in 𝐵 . Then 𝑥 = (𝑥𝑚) is a sequence of points in 𝐴. Since 𝐴 is arithmetic compact, 

therefore there exists an arithmetic convergent subsequence (𝑥𝑚𝑘
) of the sequence 𝑥. Since 𝐵 is closed, so any 

sequence 𝑥 = (𝑥𝑚) of points in 𝐵 has arithmetic convergent subsequence in 𝐵. 
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Hence, the result. 
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