Why we need Non absolute integral in place of Lebesgue integral?
DOI:
https://doi.org/10.56405/dngcrj.2021.06.01.09Keywords:
HEnstock-Kurzweil integral, Lebesgue measure, Feynman path integralAbstract
In this survey note we discuss about non absolute integrable functions and we put our view about the question: Why we need Non absolute integral in place of Lebesgue integral? Various areas are discussed, where we can find Henstock-Kurzweil integral in place of Lebesgue integral.
Downloads
References
Hamed, M.A., Cummins, B. (1991). A numerical integration formula for the solution of the singular integral equation for classical crack problems in plane and antiplane elasticity. Journal of King Saud University -Engineering Sciences, 3, 217–230.
Becerra, T.P., Sánchez-Perales, S., Oliveros, J.J. (2020). The HK-Sobolev space and applications to one-dimensional boundary value problems, Journal of King Saud University. https://doi.org/10.1016/j.jksus.2020.06.016
Grabiner, J.V. (1983). Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus. The American Mathematical Monthly, 3, 185-194.
Thomson, B.S., Bruckner, J.B, Buckner, M., Andrew, M. (2008). Elementary Real Analysis. Prentice Hall, Second Edition.
Condon, M., Deaño, A., Iserles, A., (2009). On highly oscillatory problems arising in electronic engineering. ESAIM: M2AN, 43, 785–804.
Lebesgue, H. (1902). Intégrale, longueur, aire. Annali di Matematica Pura ed Applicata, 7 (1), 231-359.
Lebesgue, H. (1904). Leçons sur l’intégration et la recherche des fonctions primi-tives. Gauthier-Villars, Paris.
Liu, W., Ye, G., Zhao, D., Torres, D.F.M. (2018). Existence theorems for a nonlinear second-order distributional differential equation. Journal of King Saud University-Science, 30, 527–530.
Hong, J., Xu, A. (2001). Effects of gravity and nonlinearity on the waves in the granular chain. Physical Review E, 63, 061310.
Oleksiy, D., Olli, M., Vladimir, I. (2006). Ryazanov and Matti Vuorinen. The Cantor Function. Expositiones Mathematicae, 24 (1), 1-37.
Gill, T.L., Zachary, W.W. (2016). Functional Analysis and the Feynman operator Calculus. Springer, New York.
Gower, T., Green, J.B., Leader, I. (2008). The Princeton Companion to Mathematics. Princeton University Press, New Jersey.
Hoffmann, H. (2014). Descriptive Characterisation of the Variational Henstock–Kurzweil–Stieltjes Integral and Applications. Karlsruhe Institute of Technology, Faculty of Mathematics, Institute for Analysis.
Hille, E., Phillips, R.S. (1957). Functional Analysis and Semigroups. American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, RI.
Kurzweil, J. (1957). Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter. Czechoslovak Mathematical Journal, 7 (3), 418–449.
Henstock, R. (1961). Definitions of Riemann Type of the Variational Integrals. Proceedings of the London Mathematical Society, 11 (1), 402–418.
Sánchez-Perales, S., Mendoza-Torres, F.J., 2020. Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral. Czechoslovak Math. J., 70, 519-537.
Mema, E. (2013). Equiintegrability and Controlled Convergence for the Henstock–Kurzweil Integral. International Mathematical Forum, 8 (19), 913–919.
Parasar, M., Talvila, E. (2004). A Product Convergence Theorem for Henstock–Kurzweil Integrals. Real Analysis Exchange, 29 (1), 199–204.
Lee, P.Y. (1989-90). On ACG Functions. Real Analysis Exchange, 15 (2), 754–759.
Gordon, R.A. (1994). The Integrals of Lebesgue, Denjoy, Perron and Henstock. American Mathematical Society, Providence, RI.
Sánchez–Perales, S., Tenorio, J.F. (2014). Laplace Transform Using the Henstock-Kurzweil Integral. Revista de la Unión Matemática Argentina, 55 (1), 7-15.
León-Velasco, D.A., Morı́n-Castillo, M.M., Oliveros-Oliveros, J.J., Pérez-Becerra, T., Escamilla-Reyna, J.A. (2019). Numerical solution of some differential equations with Henstock-Kurzweil functions. Journal of Function Spaces, 2019, Art. ID 89485709.
Downloads
Published
How to Cite
Issue
Section
License
Dera Natung Government College Research Journal retains the copyright of the article and its contents. The authors are expected to obtain permission from the journal if they choose to reuse the article under Creative Commons Attribution 4.0 International License (CC BY 4.0). Upon having received the journal’s permission, this open license would allow the authors for reuse or adaptation as long as their original article is properly and adequately cited.