Deferred d-Statistical Boundedness of Order α in Metric Spaces

Authors

DOI:

https://doi.org/10.56405/dngcrj.2024.09.01.01

Keywords:

Deferred statistical convergence, statistical boundedness, metric space

Abstract

 In this study, we introduce the concept of deferred d−statistically bounded sequences of order \alpha and give some relations betwen deferred d−statistically bounded sequences of order \alpha and deferred d−strongly p−Ces`aro summable sequences of order α in a general metric space.

Downloads

Download data is not yet available.

References

Akbaş, K.E., & Işık, M. (2020). On asymptotically λ-statistical equivalent sequences of order α in probability. Filomat, 34 (13), 4359-4365.

Agnew, R.P. (1932). On deferred Cesàro means. Annals of Mathematics, 33(3), 413-421.

Alotaib, A. & Mursaleen, M. (2014). Statistical convergence in random paranormed space. Journal of Computational Analysis and Applications, 17 (2), 297-304.

Bal, P., & Rakshit, D. (2023). A Variation of the Class of Statistical γ-Covers. Topological Algebra and its Applications, 11 (1), 20230101.

Bhardwaj, V.K., & Bala, I. (2007). On Weak Statistical Convergence. International Journal of Mathematics and Mathematical Sciences, Article ID 38530, 9 pages.

Bilalov, B., & Nazarova, T.Y. (2015a). On Statistical Convergence in Metric Space. Journal of Mathematics Research, 7 (1), 37-43.

Bilalov, B., & Nazarova, T.Y. (2015b). Statistical convergence of functional sequences. Rocky Mountain Journal of Mathematics, 45 (5), 1413-1423.

Bilalov, B., & Nazarova, T.Y. (2016). On statistical type convergence in uniform spaces. Bulletin of Iranian Mathematical Society, 42 (4), 975-986.

Bilalov, B., & Sadigova, S.R. (2015). On μ-statistical convergence. Proceedings of the American Mathematical Society, 143 (9), 3869-3878.

Çakallı, H. (1995). Lacunary Statistical Convergence in Topological Groups. Indian Journal of Pure and Applied Mathematics, 26 (2), 113-119.

Çakallı, H., Aras, C.G., & Sönmez, A. (2015). Lacunary Statistical Ward Continuity. AIP Conference Proceedings, 1676, 020042. DOI: http://dx.doi.org/10.1063/1.4930468.

Çakallı, H., & Kaplan, H. (2017). A Variation on Lacunary Statistical Quasi Cauchy Sequences. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 66 (2), 71-79.

Çakallı, H. (2019). A New Approach to Statistically Quasi Cauchy Sequences. Maltepe Journal of Mathematics, 1 (1), 1-8.

Caserta, A., Maio, G.Di., & Koçinac, L.D.R. (2011). Statistical Convergence in Function Spaces. Abstract and Applied Analysis, Article ID 420419, 11 pages.

Çınar, M, Karakas, M., Et, M. (2013). On Pointwise and Uniform Statistical Convergence of Order α for Sequences of Functions. Fixed Point Theory And Applications, 2013, 33.

Çolak, R. (2010). Statistical Convergence of Order α. Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Publication, 2010, 121-129.

Connor, J.S. (1988). The Statistical and Strong p-Cesàro Convergence of Sequences. Analysis, 8, 47-63.

Et, M., Çolak, R., & Altın, Y. (2014). Strongly Almost Summable Sequences of Order α. Kuwait Journal of Sciences, 41 (2), 35-47.

Et, M., Altınok, H., & Çolak, R. (2006). On λ-Statistical Convergence of Difference Sequences of Fuzzy Numbers. Information Sciences, 176 (15), 2268-2278.

Et, M., Mohiuddine, S.A., Şengül, H. (2016). On Lacunary Statistical Boundedness of Order α. Facta Universitatis. Series: Mathematics and Informatics, 31 (3), 707-716.

Et, M., Karatas, M. (2019). On Lacunary d-Statistical Convergence of Order α. AIP Conference Proceedings, 2086, 030017. DOI: https://doi.org/10.1063/1.5095102.

Et, M., Cınar, M., Şengül, H. (2019). Deferred Statistical Convergence in Metric Spaces. Conference Proceedings of Science andTechnology, 2 (3), 189-193.

Et, M., Cınar, M., Kandemir, H.Ş. (2020). Deferred statistical convergence of order α in metric spaces. AIMS Mathematics, 5 (4), 3731-3740.

Maio, G. Di., Koçinac, L.D.R. (2008). Statistical Convergence in Topology. Topology and its Applications, 156, 28-45.

Fast, H. (1951). Sur la Convergence Statistique. Colloquium Mathematicae, 2, 241-244.

Fridy, J. (1985). On Statistical Convergence, Analysis, 5, 301-313.

Fridy, J., & Orhan, C. (1993). Lacunary Statistical Convergence. Pacific Journal of Mathematics, 160, 43-51.

Fridy, J., & Orhan, C. (1997). Statistical Limit Superior and Limit Inferior. Proceedings of the American Mathematical Society, 125 (12), 3625-3631.

Işık, M., Akbaş, K.E. (2017a). On λ-statistical convergence of order α in probability. Journal of Inequalities and Special Functions, 8 (4), 57-64.

Işık, M., Akbaş, K.E. (2017b). On asymtotically lacunary statistical equivalent sequences of order α in probability. ITM Web of Conferences 13, 01024. DOI: 10.1051/itmconf/20171301024.

Işık, M., Et, K.E. (2015). On lacunary statistical convergence of order α in probability. AIP Conference Proceedings 1676, 020045. DOI: http://dx.doi.org/10.1063/1.4930471.

Kayan, E., Çolak, R., Altın, Y. (2018). d-Statistical Convergence of Order α and d-Statistical Boundedness of Order α in Metric Spaces. Politehnica University of Bucharest Scientific Bulletin Series A: Applied Mathematics and Physics, 80 (4), 229-238.

Küçükaslan, M., Değer, U. & Dovgoshey, O. (2014). On The Statistical Convergence of Metric-Valued Sequences. Ukrainian Mathematical Journal, 66 (5), 796-805.

Küçükaslan, M., Değer, U. (2012). On Statistical Boundedness of Metric Valued Sequences. European Journal of Pure and Applied Mathematics, 5 (2), 174-186.

Mursaleen, M. (2012). λ-Statistical Convergence. Mathematica Slovaca, 50 (1), 111-115.

Salat, T. (1980). On Statistically Convergent Sequences of Real Numbers. Mathematica Slovaca, 30, 139-150.

Savas, E. (2006). Generalized Asymptotically I-Lacunary Statistical Equivalent of Order α for Sequences of Sets. Filomat, 31 (6), 1507-1514.

Schoenberg, I.J. (1959). The Integrability of Certain Functions and Related Summability Methods. American Mathematical Monthly, 66, 361-375.

Şengül, H. (2017). Some Cesàro-type Summability Spaces Defined by a Modulus Function of Order (α,β). Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 66 (2), 80-90.

Şengül, H. (2017). On S_α^β (θ)-Convergence and Strong N_α^β (θ,p)-Summability. Journal of Nonlinear Science and Application, 10 (9), 5108-5115.

Şengül, H., & Et, M. (2017). On I-Lacunary Statistical Convergence of Order α of Sequences of Sets. Filomat, 31 (8), 2403-2412.

Şengül, H., Et, M., Çakallı, H. (2019). Lacunary d-Statistical Convergence and Lacunary d-Statistical Boundedness in Metric Spaces. International Conference ofMathematical Sciences, (ICMS 2019), Maltepe University, Istanbul, Turkey.

Steinhaus, H. (1951). Sur la Convergence Ordinaire et la Convergence Asymptotique. Colloquium Mathematicae, 2, 73-74.

Zygmund, A. (1979). Trigonometric Series. Cambridge University Press, Cambridge, UK.

Downloads

Published

2024-12-30

How to Cite

Aral, N. D., Sengul Kandemir, H., & Et, M. (2024). Deferred d-Statistical Boundedness of Order α in Metric Spaces. Dera Natung Government College Research Journal, 9(1), 1–12. https://doi.org/10.56405/dngcrj.2024.09.01.01

Issue

Section

Articles

Most read articles by the same author(s)