On Ideal Convergence in Generalized Metric Spaces
DOI:
https://doi.org/10.56405/dngcrj.2023.08.01.06Keywords:
G-metric spaces, GI-convergence, GI*-convergence, GI-Cauchy sequence, GI*-Cauchy sequenceAbstract
Our main goal in this paper is to introduce the concept of ideal convergence in G-metric spaces. We give definitions of GI-convergence and GI*-convergence in G-metric spaces. We also extend the I-convergence concept's properties to GI-convergence. Then we demonstrate that GI-convergence and GI*-convergence are equivalent by giving the property (AP) definition. Additionally we introduce GI-Cauchy and GI*-Cauchy sequences and adapt the classically stated theorems to G-metric spaces.
Downloads
References
Abazari, R. (2022). Statistical convergence in g-metric spaces. Filomat, 36(5), 1461-1468.
Choi, H., Kim, S., & Yang, S. (2018). Structure for g-metric spaces and related fixed point theorems. Arxive: 1804.03651v1.
Demirci, I., Kişi, Ö., & Gürdal, M. (2023). Rough I₂-statistical convergence in cone metric spaces in certain details. Bulletin of Mathematical Analysis and Applications, 15(1), 7-23.
Dhage, B. (1992). Generalized metric space and mapping with fixed point. Bulletin of the Calcutta Mathematical Society, 84, 329-336.
Fast, H. (1951). Sur la convergence statistique. Colloquium Mathematicae, 2, 241-244.
Fridy, J. (1985). On statistical convergence. Analysis, 5(4), 301-314.
Gahler, S. (1963). 2-metriche raume und ihre topologische strüktüre. Mathematische Nachrichten, 26, 115-148.
Gahler, S. (1966). Zur geometric 2-metriche raume. Revue Roumaine de Mathematiques Pures et Appliquees, 40, 664-669.
Gürdal, M., Kişi, Ö., & Kolancı, S. (2023). New convergence definitions for double sequences in g-metric spaces. Journal of Classical Analysis, 21(2), 173-185.
Gürdal, M., Kolancı, S., & Kişi, Ö. (2023). On generalized statistical convergence in g-metric spaces. Ilirias Journal of Mathematics.
Gürdal, V., & Kişi, Ö. (2022). Some properties of I3-λ-statistical cluster points. Dera Natung Government College Research Journal, 7(1), 10-19.
Kolancı, S., & Gürdal, M. (2023). G-metrik uzaylarda bazı yakınsaklık kavramları. 2nd International Conference Contemporary Academiz Research (s. 259-263). Konya: AllSciences Proceedings.
Kolancı, S., Gürdal, M., & Kişi, Ö. (2023). g-metric spaces and asymptotically lacunary statistical equivalent sequences. Honam Mathematical Journal, 45(3), 503-512.
Kostyrko, P., Salat, T., & Wilczynski, W. (2000). I-convergence. Real Analysis Exchange, 26(2), 669-686.
Mustafa, Z., & Sims, B. (2003). Some remarks concerning D-metric spaces. Proceedings of the Internatinal Conferences on Fixed Point Theorey and Applications, (s. 189-198). Valencia (Spain).
Mustafa, Z., & Sims, B. (2006). A new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis, 7(2), 289-297.
Nabiev, A., Pehlivan, S., & Gürdal, M. (2007). On I-Cauchy sequences. Taiwanese Journal of Mathematics, 11(2), 569-576.
Nabiev, A., Savaş, E., & Gürdal, M. (2019). Statistically localized sequences in metric spaces. Journal of Applied Analysis and Computation, 9(2), 739-746.
Savaş, E., & Gürdal, M. (2015). I-statistical convergence in probabilistic normed spaces. Scientific Bulletin-Series A Applied Mathematics and Physics, 77(4), 195-204.
Steinhaus, H. (1951). Sur la convergence ordinaire et la convergence asymptotiqu. Colloquium Mathematicae, 2, 73-74.
Şahiner, A., Gürdal, M., & Yiğit, T. (2011). Ideal convergence characterization of the completion of linear n-normed spaces. Computers & Mathematics with Applications, 61(3), 683-689.
Yamancı, U., & Gürdal, M. (2013). On lacunary ideal convergence in random-normed space. Journal of Mathematics, 2013, Article ID 868457, 8 pages.
Downloads
Published
How to Cite
Issue
Section
License
Dera Natung Government College Research Journal retains the copyright of the article and its contents. The authors are expected to obtain permission from the journal if they choose to reuse the article under Creative Commons Attribution 4.0 International License (CC BY 4.0). Upon having received the journal’s permission, this open license would allow the authors for reuse or adaptation as long as their original article is properly and adequately cited.