Paranormed Motzkin sequence spaces

Authors

DOI:

https://doi.org/10.56405/dngcrj.2024.09.01.04

Keywords:

Motzkin numbers, Paranormed sequence spaces, Duals, Matrix mappings

Abstract

In this article, it is obtained two new paranormed sequence spaces $c_0(\mathcal{M}, \mathfrak{p})$ and $c(\mathcal{M},\mathfrak{p})$ by the aid of the conservative Motzkin matrix operator $\mathcal{M}$ and is examined some topological properties of these spaces. In the continuation of the study, Schauder basis and the $\alpha$-, $\beta$- and $\gamma$-duals are determined. Finally, some new matrix mappings are characterized related new paranormed sequence spaces.

Downloads

Download data is not yet available.

References

Ahmad, Z.U., & Mursaleen, M. (1987). Köthe-Toeplitz duals of some new sequencespaces and their matrix maps, Publications de l'Institut Mathematique, 42, 57-61.

Aigner, M. (1998). Motzkin numbers, European Journal of Combinatorics, 19, 663-675.

Alp, P.Z. (2020). A new paranormed sequence space defined by Catalan conservative matrix, Mathematical Methods in the Applied Sciences, 44 (9), 7651-7658.

Altay, B., & Başar, F. (2002). On the paranormed riesz sequence spaces of non-absolute type. Southeast Asian Bulletin of Mathematics, 26 (2), 701-715.

Altay, B., & Başar, F. (2006). Some paranormed riesz sequence spaces of non-absolute type. Southeast Asian Bulletin of Mathematics, 30 (5), 591-608.

Altay, B., & Başar, F. (2006). Some paranormed sequence spaces of non-absolute type derived byweighted mean. Journal of Mathematical Analysis and Applications, 319 (2), 494-508.

Aydın, C., & Başar, F. (2004). Some new paranormed sequence spaces. Information Sciences, 160 (1-4), 27-40.

Aydın, C., & Başar, F. (2006). Some generalizations of the sequence space a_p^r. Iranian Journal of Science and Technology, Transaction A: Science, 30 (2), 175-190.

Barrucci, E., Pinzani, R., & Sprugnoli, R. (1991). The Motzkin family. PUMA Series A, 2, 249-279.

Başar, F. (2022). Summability Theory and its Applications, 2nd ed., CRC Press/Taylor & Francis Group, Boca Raton · London · New York.

Candan, M., & Güneş, A. (2015). Paranormed sequence space of non-absolute type founded using generalized difference matrix. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 85 (2), 269-276.

Çapan, H., & Başar, F. (2015). Domain of the double band matrix defined by Fibonacci numbers in the Maddox’s space l(p). Electronic Journal of Mathematical Analysis and Applications, 3 (2), 31-45.

Daglı, M.C., & Yaying, T. (2023). Some new paranormed sequence spaces derived by regular Tribonacci matrix. The Journal of Analysis, 31, 109-127.

Demiriz, S., & Erdem, S. (2024). Mersenne Matrix Operator and Its Application in p-Summable Sequence Space. Communications in Advanced Mathematical Sciences, 7(1), 42-55. https://doi.org/10.33434/cams.1414791

Donaghey, R., & Shapiro, L.W. (1977). Motzkin numbers. Journal of Combinatorial Theory, Series A, 23, 291-301.

Erdem, S. Demiriz, & Şahin, A. (2024). Motzkin Sequence Spaces and Motzkin Core. Numerical Functional Analysis and Optimization, 45 (4), 1-21.

Grosseerdmann, K.-G. (1993). Matrix transformations between the sequence spaces of Maddox. Journal of Mathematical Analysis and Applications, 180 (1), 223-238.

İlkhan, M., Demiriz, S., & Kara, E.E. (2019). A new paranormed sequence space defined by Euler totient matrix. Karaelmas Science and Engineering Journal, 9 (2), 277-282.

Jarrah, A., & Malkowsky, E. (1990). BK spaces, bases and linear operators. Rendiconti del Circolo Matematico di Palermo Series, 2 (52), 177-191.

Kara, E.E. & Demiriz, E.E. (2015). Some new paranormed difference sequence spaces derived by Fibonacci numbers. Miskolc Mathematical Notes, 16 (2), 907-923.

Maddox, I.J. (1968). Paranormed sequence spaces generated by infinite matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 64, 335-340.

Maddox, I.J. (1988). Elements of Functional Analysis, second ed. The Cambridge University Press, Cambridge, 1988.

Motzkin, T. (1948). Relations between hypersurface cross ratios, and a combinatorial formulafor partitions of a polygon, for permanent preponderance, and for non-associativeproducts. Bulletin of the American Mathematical Society, 54, 352-360.

Mursaleen, M., & Başar, F. (2020). Sequence spaces: Topic in Modern Summability Theory. CRC Press,Taylor & Francis Group, Series:Mathematics and its applications, Boca Raton, London, New York.

Nakano, H. (1951). Modulared sequence spaces. Proceedings of the Japan Academy, Ser. A, Mathematical Sciences, 27 (2), 508-512.

Savaşçı, M.Y., & Başar, F. (2023). Domain of the Cesàro mean of order α in Maddox’s space l(p). Publications de’l Institut Mathematique, 114 (128), 19-38.

Simons, S. (1969). Banach limits, infinite matrices and sublinear functionals. Journal of Mathematical Analysis and Applications, 26, 640-655.

Yaying, T. (2021). On the paranormed Nörlund difference sequence space of fractional order andgeometric properties. Mathematica Slovaca, 71 (1), 155-170.

Yaying, T., Başar, F. (2024). A study on some paranormed sequence spaces due to Lambda–Pascal matrix. Acta Scientiarum Mathematicarum, https://doi.org/10.1007/s44146-024-00124-y

Downloads

Published

2024-12-30

How to Cite

Erdem, S., Demiriz, S., & Ellidokuzoğlu, H. B. (2024). Paranormed Motzkin sequence spaces. Dera Natung Government College Research Journal, 9(1), 36–51. https://doi.org/10.56405/dngcrj.2024.09.01.04

Issue

Section

Articles