On the Domain of the Pell-Lucas Matrix in the Spaces c and c_0

Authors

DOI:

https://doi.org/10.56405/dngcrj.2025.10.01.06

Keywords:

Pell-Lucas numbers, Sequence space, Schauder basis, Compactness

Abstract

In this study, we introduce new Banach sequence spaces $c(\Theta), c_0(\Theta)$, defined via a regular infinite matrix $ \Theta = (\lambda_{nk})$, where
\[
\Theta_{nk} =
\begin{cases}
\dfrac{2\lambda_k}{3\lambda_n+\lambda_{n-1}} & 0 \leq k \leq n, \\
0, & k > n,
\end{cases}
\]
and \({\lambda_{nk}}\) represents the Pell–Lucas number sequence. The study primarily focuses on exploring the fundamental properties and inclusion relationships of the corresponding sequence spaces, establishing a Schauder basis, and determining their $\alpha$-, $\beta$-, and $\gamma$-duals. In addition, the work investigates the compactness of matrix operators acting on these associated sequence spaces.

Downloads

Download data is not yet available.

References

Aydin, F. T. (2022). Dual-hyperbolic Pell quaternions. Journal of Discrete Mathematical Sciences and Cryptography, 25 (5), 1321-1334.

Atabey, K.İ, Kalita, H., & Et, M. (2025). On Pell Sequence Spaces. Palestine Journal of Mathematics, 14 (1), 1-15.

Bicknell, M. (1975). A primer on the Pell sequence and related sequences. The Fibonacci Quarterly, 13 (4), 345-349.

Dasdemir, A. (2011). On the Pell, Pell-Lucas and modified Pell numbers by matrix method. Applied Mathematical Sciences, 5 (64), 3173-3181.

Dağlı, M.C. (2022). Matrix mappings and compact operators for Schröder sequence spaces. Turkish Journal of Mathematics, 46 (6), 2304-2320.

Demiriz, S., & Erdem, S. (2024). Mersenne matrix operator and its application in p-summable sequence space. Communications in Advanced Mathematical Sciences, 7 (1), 42-55.

Demiriz, S., Şahin, A., & Erdem, S. (2025). Some topological and geometric properties of novel generalized Motzkin sequence spaces. Rendiconti del Circolo Matematico di Palermo Series 2, 74 (4), 136.

Ercolano, J. (1979). Matrix generators of Pell sequences. The Fibonacci Quarterly, 17 (1), 71-77.

Erdem, S., Demiriz, S., & Şahin, A. (2024). Motzkin sequence spaces and Motzkin core. Numerical Functional Analysis and Optimization, 45(4-6), 283-303.

Erdem, S. (2024a). Compact operators on the new Motzkin sequence spaces. AIMS Mathematics, 9, 24193-24212.

Erdem, S. (2024b). Schröder–Catalan Matrix and Compactness of Matrix Operators on Its Associated Sequence Spaces. Symmetry, 16(10), 1317.

Horadam, A. F. (1994). Applications of modified Pell numbers to representations. Ulam Quarterly, 3 (1), 34-53.

Malkowsky, E., Rakocević, V. (2000). An introduction into the theory of sequence spaces and measures of noncompactness. Zbornik radova, 17, 143-234.

Mursaleen, M., Noman, A. K. (2010). Compactness by the Hausdorff measure of noncompactness. Nonlinear analysis: Theory, Methods and Applications, 73 (8), 2541-2557.

Petersen, G.M. (1966). Regular matrix transformations, 86. McGraw-Hill, London.

Rakocević, V. (1998). Measures of noncompactness and some applications. Filomat, 12, 87-120.

Stieglitz, M., & Tietz, H. (1977). Matrixtransformationen von folgenräumen eine ergebnisübersicht. Mathematische Zeitschrift, 154(1), 1-16.

Wilansky, A. (1984). Summability through functional analysis, Vol. 85, North-Holland Publishing Co., Amsterdam. Notas de Matemàtica [Mathematical Notes], 91.

Downloads

Published

2025-12-30

How to Cite

Shah, S. (2025). On the Domain of the Pell-Lucas Matrix in the Spaces c and c_0. Dera Natung Government College Research Journal, 10(1), 91–106. https://doi.org/10.56405/dngcrj.2025.10.01.06

Issue

Section

Articles