A new band matrix with q-Fibonacci
DOI:
https://doi.org/10.56405/dngcrj.2025.10.01.03Keywords:
q-Fibonacci Numbers; q-Fibonacci analogue; Dual spaces; Matris Transformation.Abstract
In this research paper, we define the Schröder basis of the space defined by a new q-Fibonacci band matrix. We determine its dual spaces and matrix transformations. Finally, we prove that this space is of Banach-Saks type p and has the weak fixed point property.
Downloads
References
Aktuğlu, H., & Bekar, Ş. (2011). On q-Cesàro matrix and q-statistical convergence. Journal of Computational and Applied Mathematics, 235 (16), 4717-4723.
Andrews, G.E. (2004). Fibonacci numbers and the Rogers-Ramanujan identities. Fibonacci Quarterly, 42 (1), 3-19.
Atabey, K. İ., Çınar, M., & Et, M. (2023). q-Fibonacci sequence spaces and related matrix transformations. Journal of Applied Mathematics and Computing, 69, 2135–2154.
Atabey, K. İ., Çınar, M., & Et, M. (2025a). New Triangular q-Fibonacci Matrix. Filomat, 39 (2), 601–615.
Atabey, K. İ., Çınar, M., & Et, M. (2025b). q-Fibonacci statistical convergence. Georgian Mathematical Journal, 32 (5), 759-766.
Atabey, K. İ. (2025). On Sequence Spaces of New q-Fibonacci Band Matrix. In M. F. Karaaslan (Ed.), Proceedings of International Conference on Mathematics and Computers with Applications, (pp. 206–215) ISBN 978-625-96744-0-7.
Aytaç, P. (2018). Some Arithmetic Properties of q-Fibonacci Numbers. Master thesis, Akdeniz University.
Başar, F. & Dutta H. (2020). Summable spaces and their duals, matrix transformations and geometric properties. CRC Press, https://doi.org/10.1201/9781351166928
Carlitz, L. (1974). Fibonacci Notes-3: q-Fibonacci Numbers. Fibonacci Quarterly, 12 (4), 317–322. https://doi.org/10.1080/00150517.1974.12430696.
Çınar, M., & Et, M. (2020). q-Double Cesàro Matrices and q-Statistical Convergence of Double Sequences. National Academy Science Letters, 43 (1), 73-76.
Dağlı, M. (2023). A novel conservative matrix arising from Schröder numbers and its properties, Linear and Multilinear Algebra, 71 (8), 1338-1351.
Demiriz, S., & Şahin, A. (2016). q-Cesàro sequence spaces derived by q-analogues, Advances in Mathematics, 5 (2), 97-110.
Diestel, J. (2012). Sequences and series in Banach spaces (Vol. 92). Springer Science and Business Media, 2012.
Ellidokuzoglu, H. B., Demiriz, S. & Kara, M.İ. (2025). q-Schroder sequence spaces and Schroder core. Filomat, 39 (2), 715-729.
García-Falset, J. (1994). Stability and fixed points for nonexpansive mappings. Houston Journal of Mathematics, 20(3), 495-506.
García-Falset, J. (1997). The fixed point property in Banach spaces with the NUS-property. Journal of Mathematical Analysis and Applications, 215 (2), 532-542.
Hudzik, H., Karakaya, V., Mursaleen, M. & Şimsek, N. (2014). Banach-Saks type and Gurariǐ modulus of convexity of some Banach sequence spaces. Abstract and Applied Analysis, 2014, 427382, 9 pages.
Hirschhor, M. D. (1972). Partitions and Ramanujan’s continued fraction. Duke Mathematical Journal, 39 (4), 789-791.
Mursaleen, M., Başar, F., & Altay, B. (2006). On the Euler sequence spaces which include the spaces l_p and l_∞. Nonlinear Analysis: Theory, Methods and Applications, 65 (3), 707-717.
Kac, V., & Cheung, P. (2002). Quantum Calculus. Springer, New York.
Kananthai, A., Mursaleen, M., Sanhan, W., & Suantai, S. (2002). On property (H) and rotundity of difference sequence spaces. Journal of Nonlinear and Convex analysis, 3 (3), 401-410.
Kara, E. E. (2013). Some topological and geometrical properties of new Banach sequence spaces. Journal of Inequalities and Applications, 2013 (1), 1-15.
Kirişçi, M., & Başar, F. (2010). Some new sequence spaces derived by the domain of generalized difference matrix. Computers and Mathematics with Applications, 60 (5), 1299-1309.
Koshy, T. (2001). Fibonacci and Lucas numbers with applications. John Wiley and Sons.
Knaust, H. (1992). Orlicz sequence spaces of Banach-Saks type. Archiv der Mathematik, 59 (6), 562-565.
Schur, I. (1917). Ein Beitrag zur Additiven Zahlentheorie, Sitzungsber. Akad. Wissensch. Berlin, Phys. Math. Klasse, 302-321.
Savaş, E., Karakaya, V., & Şimşek, N. (2009). Some l_p-type new sequence spaces and their geometric properties. Abstract and Applied Analysis, 2009, 696971.
Selmanoğulları, T., Savaş, E., & Rhoades, B.E. (2011). On q-Hausdorff matrices. Taiwanese Journal of Mathematics, 15 (6), 2429-2437.
Stieglitz, M., & Tietz, H. (1977). Matrixtransformationen von Folgenräumen Eine Ergebnisübersicht. (German) Mathematische Zeitschrift, 154 (1), 1-16
Yaying, T., Hazarika, B., & Mursaleen, M. (2021). On sequence space derived by the domain of q-Cesàro matrix in l_p space and the associated operator ideal. Journal of Mathematical Analysis and Application, 493 (1), 1-17.
Yaying, T., Hazarika, B., & Et, M. (2023). On some sequence spaces via q-Pascal matrix and its geometric properties. Symmetry, 15(9), 1659.
Yaying, T., Hazarika, B., Tripathy, B. C., & Mursaleen, M. (2022). The Spectrum of Second Order Quantum Difference Operator. Symmetry, 14(3), 557.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Koray Ibrahim Atabey

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.

