Arithmetic continuity in cone metric space

Authors

  • Taja Yaying Department of Mathematics, Dera Natung Government College, Itanagar-791113, Arunachal Pradesh, India

DOI:

https://doi.org/10.56405/dngcrj.2020.05.01.07

Keywords:

Cone metric space, Arithmetic convergence, Arithmetic continuous, Arithmetic compactness

Abstract

William Henry Ruckle introduced the notion of arithmetic convergence in the sense that a sequence  defined on the set of natural numbers  is said to be arithmetic convergent if for each  there is an integer  such that for every integer , , where  denotes the greatest common divisor of m and n. In this paper, the notion of arithmetic convergence has been extended to cone metric space. Using the concept of arithmetic convergence, arithmetic continuity and arithmetic compactness have been defined in cone metric spaces and give some interesting results.

Downloads

Download data is not yet available.

References

Sönmez, A. Fixed point theorems in partial cone metric spaces. http://arxiv.org/abs/1101.2741.

Sönmez, A. (2010). On paracompactness in cone metric spaces. Applied Mathematics Letters, 23, 494-497.

Turkoglu, D., Abuloha, A. (2010). Cone metric spaces and fixed-point theorems in diametrically contractive mappings. Acta Mathematica Sinica, English Series, 26, 489-496.

Shadad, F., Noorani M.S.M. (2013). Fixed point results in quasi cone metric spaces. Abstract and Applied Analysis. Vol. 2013. Article ID 303626, 7 pages.

Albert, G.E. (1941). A note on quasi metric spaces. Bulletin of American Mathematical Society, 47, 479-482.

Ҫakalli, H. (2008). Sequential definitions of compactness. Applied Mathematics Letters, 21, 594- 598.

Ҫakalli, H. (2016). On variations of quasi-Cauchy sequences in cone metric spaces. Filomat, 30 (3), 603-610.

Ҫakalli, H., Sönmez, A. (2013): Slowly oscillating continuity in abstract metric spaces. Filomat, 27 (5), 925-930.

Künzi, H.P.A. (1983). A note on sequentially compact pseudometric spaces. Monatshefte für Mathematik, 95, 219-220.

Antoni, J., Šalát, T. (1989). On the A- continuity of real functions. Acta Mathematica Universitatis Comenianae, 39, 159-164.

Collins, J., Zimmer, J. (2007). An asymmetric Arzela-Ascoli theorem. Topology and its Applications, 154, 2312-2322.

Connor, J., Grosse-Erdmann, K.G. (2003). Sequential definition of continuity for real functions. Rocky Mountain Journal of Mathematics, 33 (1), 93-121.

Chi, K.P., An, T.V. (2011). Dugundji’s theorem for cone metric spaces. Applied Mathematics Letters, 24, 387-390.

Huang, L.G., Zhang, X. (2007). Cone metric spaces and fixed-point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 33 (2), 1468–1476.

Abbas, M., Jungek, G. (2008). Common fixed-point results for non-commuting mappings without continuity in cone metric spaces. Journal of Mathematical Analysis and Applications, 341, 416-420.

Abbas, M., Rhoades, B.E. (2009). Fixed and periodic point results in cone metric space. Applied Mathematics

Letters, 22, 511-515.

Khani, M., Pourmahdian, M. (2011). On the metrizability of cone metric spaces. Topology and its Applications, 158, 190-193.

Engelking, R. (1989). General Topology, revised and completed edition, Heldermann Verlag, Berlin.

Radenovic, S., Kadelburg, Z. (2011). Quasi-contractions on symmetric and cone symmetric spaces. Banach Journal of Mathematical Analysis, 5 (1), 38–50.

Rejapour, S., Hamlbarani, R. (2008). Some notes on the paper Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 345 (2), 719-724.

Abdeljawad, T., Karapinar, E. (2009). Quasicone Metric Spaces and Generalizations of Caristi Kirk’s Theorem. Fixed Point Theory and Applications, Vol 2009, Article ID 574387, 9 pages.

Yaying, T., Hazarika, B. (2017a). On arithmetical summability and multiplier sequence. National Academy Science Letters, 40, 43-46.

Yaying, T., Hazarika, B. (2017b). On arithmetic continuity. Boletim da Sociedade Paranaense de Matemática, 35, 139-145.

Yaying, T., Hazarika, B. (2017c). On arithmetic continuity in a metric space. Africa Matematika, 28, 985-989.

Yaying, T., Hazarika, B. (2018). On lacunary arithmetic convergence. Proceedings of the Jangjeon Mathematical Society, 21 (3), 507-513.

Wilson, W.A. (1931). On quasi-metric spaces. American Journal of Mathematics, 53, 675–684.

Ruckle, W.H. (2012). Arithmetical Summability. Journal of Mathematical Analysis and Applications, 396, 741-748.

Downloads

Published

2020-12-30

How to Cite

Yaying, T. (2020). Arithmetic continuity in cone metric space. Dera Natung Government College Research Journal, 5(1), 55–62. https://doi.org/10.56405/dngcrj.2020.05.01.07

Issue

Section

Articles